A. Gritsans and F. Sadyrbaev On solution set of a two-parameter nonlinear oscillator: the Neumann problem |
Boundary value problems of the form $x'' = -\lambda f(x^+) + \mu g(x^-)$ $(i),$ $x'(a)=0=x'(b)$
$(ii)$ are considered, where $\lambda,\mu>0$. In our
considerations functions $f$ and $g$ may be nonlinear. We give
description of a solution set $F$ of the problem $(i)$, $(ii)$~- a
set of all triples $(\lambda,\mu, \alpha)$ such that
$(\lambda,\mu,x(t))$ nontrivially solves the problem $(i)$, $(ii)$
and $|x'(z)|=\alpha $ at any zero of $x(t)$ $(iii)$. It turns out |