Yu.A. Klokov
On extremals of a certain functional
 
Extremals of the functional
\begin{equation*}
I(l)=\int _0^1 (x'^2+y'^2+z'^2)^{1/2} v^{-1}(x,y,z)dt
\end{equation*}
are studied, where $v>0$, $\forall (x,y,z)\in R^3$, $v\in
C^1(R^3)$, $x(t),y(t),z(t)\in C^2(I)$, $I=[0,1]$.

Contents