On solution set of a two-parameter nonlinear oscillator: the Neumann problem

A. Gritsans, F. Sadyrbaev

Summary. Boundary value problems of the form $x^{\prime \prime}=-\lambda f\left(x^{+}\right)+\mu g\left(x^{-}\right)(i), x^{\prime}(a)=$ $0=x^{\prime}(b)(i i)$ are considered, where $\lambda, \mu>0$. In our considerations functions f and g may be nonlinear. We give description of a solution set F of the problem (i), (ii) - a set of all triples (λ, μ, α) such that $(\lambda, \mu, x(t))$ nontrivially solves the problem (i), (ii) and $\left|x^{\prime}(z)\right|=\alpha$ at any zero of $x(t)$ (iii). It turns out that the solution set F is a union of solution surfaces $F_{i}^{ \pm}(i=1,2, \ldots)$ and the non coinciding solution surfaces are centro-affine equivalent. Cross sections of the solution surface $F_{1}^{ \pm}$with planes $\alpha=$ const, $\mu=$ const and $\mu=$ const $\cdot \lambda$ will be analyzed for the nonlinearities $f=g=x^{3}+x^{41}$.

MSC: 34B15
Keywords: Neumann boundary value problem, time map, solution surface, centroaffine equivalence.

1 Introduction

We consider the Neumann problem

$$
\begin{equation*}
x^{\prime \prime}=-\lambda f\left(x^{+}\right)+\mu g\left(x^{-}\right), \quad x^{\prime}(a)=0=x^{\prime}(b), \tag{1}
\end{equation*}
$$

where λ and μ are the positive parameters, $x^{+}=\max \{x, 0\}, x^{-}=\max \{-x, 0\}$ and functions f and g satisfy the following conditions (we formulate these conditions only for a function f, supposing that analogous conditions are fulfilled for a function g also):
(A1) f is a $[0,+\infty) \rightarrow[0,+\infty)$ continuous function, $f(x)>0$ for all $x>0$ and $f(0)=0$, besides $\int_{0}^{x} f(s) d s \rightarrow+\infty$ as $x \rightarrow+\infty$;
(A2) a first zero function (the time map) $t_{f}(\alpha)$ to the Cauchy problem

$$
x^{\prime \prime}+f(x)=0, \quad x(a)=0, \quad x^{\prime}(a)=\alpha>0
$$

is a $(0,+\infty) \rightarrow(0,+\infty)$ continuous function;
(A3) for a some $k \in \mathbb{N}$:

$$
\begin{equation*}
f(0)=f^{\prime}(0+)=\cdots=f^{(k-1)}(0+)=0,0<f^{(k)}(0+) \leq+\infty ; \tag{2}
\end{equation*}
$$

(A4) $\frac{\int_{0}^{x} f(s) d s}{x^{\kappa-1}} \rightarrow+\infty$ as $x \rightarrow+\infty$ and $\frac{f(x)}{x^{\kappa}}$ is bounded for x large for a some $\kappa \geq 1$.
Definition 1.1 A solution set of the problem (1) is a set F of all triples (λ, μ, α) such that $(\lambda, \mu, x(t))$ nontrivially solves the problem (1) and

$$
\begin{equation*}
\left|x^{\prime}(z)\right|=\alpha, \text { at any zero } z \text { of } x(t) \tag{3}
\end{equation*}
$$

Remark 1.1. A solution of the equation $x^{\prime \prime}=-\lambda f\left(x^{+}\right)+\mu g\left(x^{-}\right)$is a C^{2}-function. Therefore $x^{\prime}(t)$ is continuous. If z_{1} and z_{2} are two consecutive zeros of $x(t)$ then it is known that $\left|x^{\prime}\left(z_{1}\right)\right|=\left|x^{\prime}\left(z_{2}\right)\right|$. Thus introduction of the normalization condition in the form (3) is justified.

Theorem 3.1 claims that the solution set is a union $F=\cup_{i=1}^{\infty} F_{i}^{ \pm}$of solution surfaces. The solution surface $F_{i}^{+}\left(F_{i}^{-}\right)$describes all C^{2}-solutions of the problem (1) with exactly i zeros in the interval (a, b) and negative (positive) derivative at the first after a zero. Notion of a solution surface was introduced in [7] for the case of the Dirichlet boundary conditions.

2 Time maps

Let $T_{f}(\alpha, \lambda)$ be the first zero function (the time map) for the Cauchy problem $x^{\prime \prime}+\lambda f(x)=$ $0, \quad x(a)=0, x^{\prime}(a)=\alpha>0$.

Theorem 2.1 If a function f satisfies conditions (A1)-(A4) then

1. the time map $T_{f}(\alpha, \lambda)$ is a continuous function and $T_{f}(\alpha, \lambda)=\frac{1}{\sqrt{\lambda}} t_{f}\left(\frac{\alpha}{\sqrt{\lambda}}\right)$ for all $\alpha, \lambda>0$;
2. for any $\alpha, \beta, \lambda>0$ the rescaling formula is valid

$$
\begin{equation*}
T_{f}(\beta, \lambda)=\frac{\alpha}{\beta} T_{f}\left(\alpha, \lambda \frac{\alpha^{2}}{\beta^{2}}\right) \tag{4}
\end{equation*}
$$

3. for a fixed $\alpha>0$:

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0+} T_{f}(\alpha, \lambda)=+\infty, \quad \lim _{\lambda \rightarrow+\infty} T_{f}(\alpha, \lambda)=0 \tag{5}
\end{equation*}
$$

Proof. For 1. see [3].
2. For $\alpha, \beta, \lambda>0$ we have

$$
\begin{aligned}
T_{f}(\beta, \lambda)=\frac{1}{\sqrt{\lambda}} t_{f}\left(\frac{\beta}{\sqrt{\lambda}}\right)=\frac{1}{\sqrt{\lambda}} t_{f}\left(\frac{\alpha}{\sqrt{\lambda}} \frac{\beta}{\alpha}\right) & =\frac{1}{\sqrt{\lambda}} t_{f}\left(\frac{\alpha}{\sqrt{\frac{\lambda \alpha^{2}}{\beta^{2}}}}\right)= \\
& =\frac{1}{\sqrt{\frac{\lambda \alpha^{2}}{\beta^{2}}}} \frac{\alpha}{\beta} t_{f}\left(\frac{\alpha}{\sqrt{\frac{\lambda \alpha^{2}}{\beta^{2}}}}\right)=\frac{\alpha}{\beta} T_{f}\left(\alpha, \lambda \frac{\alpha^{2}}{\beta^{2}}\right) .
\end{aligned}
$$

3. follows from conditions (A3) and (A4): the second limit was obtained in [3], but the first one can be proved using time map properties [6].

3 Description and properties of a solution set

Theorem 3.1 Let functions f and g satisfy the conditions (A1)-(A4).

1. A solution set F of the problem (1) is a union of solution surfaces

$$
\begin{equation*}
F_{i}^{ \pm}=\left\{(\lambda, \mu, \alpha): T_{f}(\alpha, \lambda)+T_{g}(\alpha, \mu)=\frac{2(b-a)}{i}\right\} \quad(i \in \mathbb{N}) \tag{6}
\end{equation*}
$$

2. Solution surfaces $F_{i}^{ \pm}$are nonempty sets for any $i \in \mathbb{N}$.
3. Solution surfaces F_{i}^{+}and F_{i}^{-}coincide for $i \in \mathbb{N}$.
4. Solution surfaces $F_{i}^{ \pm}$and $F_{j}^{ \pm}$do not intersect unless $i=j$.
5. For given $i \neq j$ the solution surfaces $F_{i}^{ \pm}$and $F_{j}^{ \pm}$are centro-affine equivalent under the mapping $\Phi_{i, j}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(\lambda, \mu, \alpha) \xrightarrow{\Phi_{i, j}}(\bar{\lambda}, \bar{\mu}, \bar{\alpha})$, where $\bar{\lambda}=\left(\frac{j}{i}\right)^{2} \lambda, \bar{\mu}=\left(\frac{j}{i}\right)^{2} \mu$, $\bar{\alpha}=\frac{j}{i} \alpha$.

Proof. 1. follows from [2] (see also [3]) and the definition of a solution set.
2. follows from the assertions 1 and 3 of the Theorem 2.1.
3. and 4. follow from the equations (6).
5. For given $i \neq j$ and $\alpha>0$ set $\bar{\alpha}=\frac{j}{i} \alpha$. Suppose $(\lambda, \mu, \alpha) \in F_{i}^{ \pm}$:

$$
i T_{f}(\alpha, \lambda)+i T_{g}(\alpha, \mu)=2(b-a)
$$

Applying the rescaling formula (4), where $\bar{\alpha}$ replaces β, to the previous equation one has

$$
\begin{gathered}
i \frac{\bar{\alpha}}{\alpha} T_{f}\left(\bar{\alpha}, \lambda \frac{\bar{\alpha}^{2}}{\alpha^{2}}\right)+i \frac{\bar{\alpha}}{\alpha} T_{g}\left(\bar{\alpha}, \mu \frac{\bar{\alpha}^{2}}{\alpha^{2}}\right)=2(b-a), \\
j T_{f}\left(\bar{\alpha},\left(\frac{j}{i}\right)^{2} \lambda\right)+j T_{g}\left(\bar{\alpha},\left(\frac{j}{i}\right)^{2} \mu\right)=2(b-a), \\
j T_{f}(\bar{\alpha}, \bar{\lambda})+j T_{g}(\bar{\alpha}, \bar{\mu})=2(b-a),
\end{gathered}
$$

therefore $(\bar{\lambda}, \bar{\mu}, \bar{\alpha}) \in F_{j}^{ \pm}$. Since $\Phi_{i, j}^{-1}=\Phi_{j, i}$ one has $\Phi_{i, j}\left(F_{i}^{ \pm}\right)=F_{j}^{ \pm}$and the surfaces $F_{i}^{ \pm}$ and $F_{j}^{ \pm}$are centro-affine equivalent under the mapping $\Phi_{i, j}$.
Remark 3.1. Since solution surfaces $F_{i}^{ \pm}$and $F_{j}^{ \pm}(i \neq j)$ are centro-affine equivalent they have similar shape. Therefore it is enough to study properties of one solution surface, for example $F_{1}^{ \pm}$, in order to know properties of all the remainder solution surfaces.

In the rest of the article we focus on the problem (1) where $f=g=x^{\frac{1}{3}}+x^{41}$ are the concave-convex type nonlinearities and an interval (a, b) is $(0,1)$. We consider cross sections of the solution surface $F_{1}^{ \pm}$with the planes $\alpha=$ const, $\mu=$ const and $\mu=$ const $\cdot \lambda$.

Figure 1: Two views of the solution surface $F_{1}^{ \pm}$of the problem (1), where

$$
f=g=x^{\frac{1}{3}}+x^{41} \text { and } b-a=1 .
$$

4 Cross sections of a solution surface $F_{1}^{ \pm}$with a plane

 $\alpha=$ constA cross section of a solution surface $F_{i}^{ \pm}$with a plane $\alpha=\alpha_{0}>0\left(\alpha_{0}\right.$ - fixed) is a set $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}}$ (the curve) of all triples (λ, μ, α_{0}) such that

$$
\begin{equation*}
T_{f}\left(\alpha_{0}, \lambda\right)+T_{g}\left(\alpha_{0}, \mu\right)=\frac{2(b-a)}{i} . \tag{7}
\end{equation*}
$$

In this paragraph we will identify a set $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}}$ with its projection to the (λ, μ)-plane: $\left(\lambda, \mu, \alpha_{0}\right) \mapsto(\lambda, \mu)$.

Proposition 4.1

- Suppose $T_{f}\left(\alpha, \lambda_{*}\right)=\frac{2(b-a)}{i}$ for some $\lambda_{*}>0$ and $i \in \mathbb{N}$. Then the curve $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}}$ has a vertical asymptote at $\lambda=\lambda_{*}$.
- Suppose $T_{g}\left(\alpha, \mu_{*}\right)=\frac{2(b-a)}{i}$ for some $\mu_{*}>0$ and $i \in \mathbb{N}$. Then the curve $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}}$ has a horizontal asymptote at $\mu=\mu_{*}$.

Figure 2: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(1, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at a point $\lambda=\lambda_{* 1}$.

Figure 4: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(1.4, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at three points $\lambda=\lambda_{* j}$ ($j=1,2,3$).

Figure 3: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=1}$ has a horizontal asymptote at $\mu=\lambda_{* 1}$ and a vertical asymptote at $\lambda=\lambda_{* 1}$.

Figure 5: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=1.4}$ have three unbounded components, three horizontal asymptotes at $\mu=\lambda_{* j}$ and three vertical asymptotes at $\lambda=\lambda_{* j}(j=1,2,3)$.

Figure 6: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(2, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at a point $\lambda=\lambda_{* 1}$.

Figure 8: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(2.6, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at a point $\lambda=\lambda_{* 1}$.

Figure 7: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=2}$ has a horizontal asymptote at $\mu=\lambda_{* 1}$ and a vertical asymptote at $\lambda=\lambda_{* 1}$.

Figure 9: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=2.6}$ have two components (one component ir unbounded, but the second one is separated and bounded), a horizontal asymptote at $\mu=\lambda_{* 1}$ and a vertical asymptote at $\lambda=\lambda_{* 1}$.

Figure 10: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(2.94, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at a point $\lambda=\lambda_{* 1}$.

Figure 12: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(3.43, \lambda)$ intersects with the line $y=\frac{2(b-a)}{1}$ at a point $\lambda=\lambda_{* 1}$.

Figure 11: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=2.94}$ have two components (one component ir unbounded, but the second one is separated and bounded), a horizontal asymptote at $\mu=\lambda_{* 1}$ and a vertical asymptote at $\lambda=\lambda_{* 1}$.

Figure 13: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The curve $\left.F_{1}^{ \pm}\right|_{\alpha=3.43}$ has a horizontal asymptote at $\mu=\lambda_{* 1}$ and a vertical asymptote at $\lambda=\lambda_{* 1}$.

5 Cross sections of a solution surface $F_{1}^{ \pm}$with a plane

 $\mu=$ constA cross section of a solution surface $F_{i}^{ \pm}$with a plane $\mu=\mu_{0}>0$ (μ_{0} - fixed) is a set $\left.F_{i}^{ \pm}\right|_{\mu=\mu_{0}}$ (the curve) of all triples (λ, μ_{0}, α) such that

$$
\begin{equation*}
T_{f}(\alpha, \lambda)+T_{g}\left(\alpha, \mu_{0}\right)=\frac{2(b-a)}{i} \tag{8}
\end{equation*}
$$

In this paragraph we will identify a set $\left.F_{i}^{ \pm}\right|_{\mu=\mu_{0}}$ with its projection to the (λ, α)-plane: $\left(\lambda, \mu_{0}, \alpha\right) \mapsto(\lambda, \alpha)$.

Proposition 5.1 Suppose $T_{g}\left(\alpha_{*}, \mu_{0}\right)=\frac{2(b-a)}{i}$ for some $\alpha_{*}>0$ and $i \in \mathbb{N}$. Then the curve $\left.F_{i}^{ \pm}\right|_{\mu=\mu_{0}}$ has a horizontal asymptote at $\alpha=\alpha_{*}$.

Figure 14: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The Figure 15: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$.
graphic of the function $y=T_{f}(\alpha, 1)$ intersects with the line $y=\frac{2(b-a)}{1}$ at the two points $\alpha=\alpha_{* 1}$ and $\alpha=\alpha_{* 2}$.

The projection of the curve $\left.F_{1}^{ \pm}\right|_{\mu=1}$ to the (λ, α)-plane have two horizontal asymptotes at

$$
\alpha=\alpha_{* 1} \text { and } \alpha=\alpha_{* 2} .
$$

Figure 16: The case $f=x^{\frac{1}{3}}+x^{41}, b-a=1$. The graphic of the function $y=T_{f}(\alpha, 3)$ does not intersect with the line $y=\frac{2(b-a)}{1}$.

Figure 17: The curve $\left.F_{1}^{ \pm}\right|_{\mu=3}$ (actually curve's projection to the (λ, α)-plane) in the case

$$
f=g=x^{\frac{1}{3}}+x^{41}, b-a=1
$$

6 Cross sections of a solution surface $F_{1}^{ \pm}$with a plane

 $\mu=$ const $\cdot \lambda$A cross section of a solution surface $F_{i}^{ \pm}$with a plane $\mu=k \cdot \lambda(k>0$ - fixed) is a set $\left.F_{i}^{ \pm}\right|_{\mu=k \cdot \lambda}$ (the curve) of all triples (λ, μ, α) such that

$$
\begin{equation*}
T_{f}(\alpha, \lambda)+T_{g}(\alpha, \mu)=\frac{2(b-a)}{i} \text { and } \mu=k \cdot \lambda \tag{9}
\end{equation*}
$$

Figure 18: The case $f=g=x^{\frac{1}{3}}+x^{41}, b-a=1$. The projections of the curves $\left.F_{1}^{ \pm}\right|_{\mu=k \cdot \lambda}$ to the (λ, α)-plane: $(\lambda, k \cdot \lambda, \alpha) \mapsto(\lambda, \alpha)$.

7 Conclusions

A two-parameter nonlinear oscillator with a Neumann boundary value conditions exhibits the following features.

1. A solution set is a union of solution surfaces $F_{i}^{ \pm}$, besides any two solutions surfaces $F_{i}^{ \pm}$and $F_{j}^{ \pm}(i \neq j)$ are centro-affine equivalent, in other words solution surfaces with different numbers have the same shape.
2. Cross sections $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}}$ are similar to the branches of the classical Fučík spectrum if the functions $T_{f}\left(\alpha_{0}, \lambda\right)$ and $T_{g}\left(\alpha_{0}, \mu\right)$ are monotone in λ and μ respectively.
3. It is possible that cross sections $\left.F_{i}^{ \pm}\right|_{\alpha=\alpha_{0}} 1$) have separate bounded components, 2) have multiple unbounded components.
4. It is possible that cross sections $\left.F_{i}^{ \pm}\right|_{\mu=\mu_{0}}$ have multiple unbounded components.
5. Suppose $f=g$. We conjecture that if 1) in a some neighborhood of a point $\left(\lambda_{0}, \mu_{0}\right)$ a solution surface $F_{i}^{ \pm}$can be expressed as the graphic of a function $\alpha=\Omega(\lambda, \mu)$, 2) the function $\alpha=\Omega(\lambda, \mu)$ has a local strict extremum at the point (λ_{0}, μ_{0}) and $\alpha_{0}=\Omega\left(\lambda_{0}, \mu_{0}\right)$, then $\lambda_{0}=\mu_{0}$. This would mean that such points are

$$
\left(\lambda_{0}, \lambda_{0}, \alpha_{0}\right)=\left(\left(\frac{i t_{f}\left(\gamma_{0}\right)}{b-a}\right)^{2},\left(\frac{i t_{f}\left(\gamma_{0}\right)}{b-a}\right)^{2}, \frac{i \gamma_{0} t_{f}\left(\gamma_{0}\right)}{b-a}\right)
$$

where γ_{0} is a strict extremum point of the function $\gamma t_{f}(\gamma)$, since the projection of the cross section $\left.F_{i}^{ \pm}\right|_{\mu=\lambda}$ (the curve) to the (λ, α)-plane due to the rescaling formula (4) has a parametrization without self crossings: $\alpha=p_{i}(\gamma), \lambda=q_{i}(\gamma)(\gamma>0)$, where $p_{i}(\gamma)=\frac{i \gamma t_{f}(\gamma)}{b-a}$ and $q_{i}(\gamma)=\left(\frac{i t_{f}(\gamma)}{b-a}\right)^{2}$.

References

1. A. Gritsans, F. Sadyrbaev. On nonlinear Fučík type spectra, Math. Model. Anal., 13(2), pp. 203-210, 2008.
2. A. Gritsans, F. Sadyrbaev. Nonlinear Spectra: the Neumann Problem, Math. Model. Anal., 14(1), pp. 33-42, 2009.
3. A. Gritsans and F. Sadyrbaev. Time map formulae and their applications, Proceedings LU MII "Mathematics. Differential Equations", 8, pp. 72-93, 2008.
4. A. Gritsans, F. Sadyrbaev. Nonlinear spectra for parameter dependent ordinary differential equations, Nonlinear Anal., Model. Control, 12(2), pp. 253-267, 2007.
5. A. Kufner, S. Fučík. Nonlinear Differential Equations, Elsevier, Amsterdam-OxfordNew York, 1980.
6. Z. Opial. Sur les périodes des solutions de l'équation différentielle $x^{\prime \prime}+g(x)=0$, Ann. Polon. Math., 10, pp. 49-72, 1961.
7. F. Sadyrbaev. Multiplicity in parameter-dependent problems for ordinary differential equations, Math. Model. Anal., 14(4), pp. 503-514, 2009.

УДК 517.927
А. Грицанс, Ф. Садырбаев. О множестве решений нелинейного осцилятора с двумя параметрами: задача Неймана

Аннотация. Рассматривается граничная задача $x^{\prime \prime}=-\lambda f\left(x^{+}\right)+\mu g\left(x^{-}\right)(i), x^{\prime}(a)=$ $0=x^{\prime}(b)$ (ii), где $\lambda, \mu>0$, при этом функции f и g могут быть нелинейными. Множество решений F задачи (i), ($i i$) - это множество всех троек (λ, μ, α), таких что ($\lambda, \mu, x(t)$) является нетривиальным решением задачи (i), ($i i$) и $\left|x^{\prime}(z)\right|=\alpha$ в нулях функции $x(t)$. Оказывается, что множество решений F является объединением поверхностей решений $F_{i}^{ \pm}(i=1,2, \ldots)$, при этом не совпадающие поверхности решений центроаффинно эквивалентны. Для случая функций $f=g=x^{3}+x^{41}$ указаны сечения поверхности решений $F_{1}^{ \pm}$с плоскостями $\alpha=$ const, $\mu=$ const и $\mu=$ const $\cdot \lambda$.
A. Gricāns, F. Sadirbajevs. Par divu parametru nelineāra oscilatora atrisinājumu kopu: Neimana problēma

Anotācija. Tiek aplūkota robežproblēma $x^{\prime \prime}=-\lambda f\left(x^{+}\right)+\mu g\left(x^{-}\right)(i), x^{\prime}(a)=0=$ $x^{\prime}(b)(i i)$, kur $\lambda, \mu>0$, pie tam funkcijas f un g var būt arī nelineāras. Problēmas (i), (ii) atrisinājumu kopa F sastāv no visiem trijniekiem (λ, μ, α), ka $(\lambda, \mu, x(t))$ ir problēmas (i), (ii) netriviāls atrisinājums un $\left|x^{\prime}(z)\right|=\alpha$ funkcijas $x(t)$ nullıu punktos. Izrādās, ka atrisinājumu kopa F ir atrisinājuma virsmu $F_{i}^{ \pm}(i=1,2, \ldots)$ apvienojums, pie tam nesakrītošās atrisinājumu virsmas ir centro-afīni ekvivalentas. Tiek aplūkoti atrisinājumu virsmas $F_{1}^{ \pm}$šķēlumi ar plaknēm $\alpha=$ const, $\mu=$ const un $\mu=$ const $\cdot \lambda$ nelinearitāšu $f=g=x^{3}+x^{41}$ gadījumā.

Daugavpils University
Received 25.07.2009
Department of Natural Sciences
and Mathematics
Daugavpils, Parades str. 1
arminge@inbox.lv
felix@latnet.lv

