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On solution set of a two-parameter nonlinear
oscillator: the Neumann problem

A. Gritsans, F. Sadyrbaev

Summary. Boundary value problems of the form 2’ = —\f (") 4+ pg(z™) (i), 2/(a) =
0 = 2/(b) (ii) are considered, where A,z > 0. In our considerations functions f and g
may be nonlinear. We give description of a solution set F' of the problem (i), (ii) - a
set of all triples (A, u, ) such that (A, p, z(t)) nontrivially solves the problem (i), (i7)
and |2'(z)] = «a at any zero of x(t) (i7d). It turns out that the solution set F' is a
union of solution surfaces F= (i = 1,2,...) and the non coinciding solution surfaces are
centro-affine equivalent. Cross sections of the solution surface FljE with planes o = const,
i = const and p = const - A will be analyzed for the nonlinearities f = g = 2 + 2*!.
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1 Introduction

We consider the Neumann problem
2" = -Nf(x) +ug(x™), 2'(a) =0=2(b), (1)

where A and p are the positive parameters, ™ = max{z,0}, = = max{—=z,0} and
functions f and g satisfy the following conditions (we formulate these conditions only for
a function f, supposing that analogous conditions are fulfilled for a function g also):

(A1) fisa|0,4+00) — [0,+00) continuous function, f(x) > 0 for all z > 0 and f(0) = 0,
besides [ f(s)ds — 400 as 2 — +00;

(A2) a first zero function (the time map) ¢s(a) to the Cauchy problem
"+ f(x) =0, z(a)=0, 2'(a)=a>0
is a (0,400) — (0, 4+00) continuous function;
(A3) for a some k € N:

F(0) = f1(0+) = -+ = FED(0+4) = 0, 0 < FB(0+) < +oo; 2)
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(A4) Jo F@)ds 46 as & — +00 and L2 is bounded for large for a some x > 1.

pk—1 Tk

Definition 1.1 A solution set of the problem (1) is a set ' of all triples (A, u, ) such
that (X, pt, z(t)) nontrivially solves the problem (1) and

|2(2)| = «, at any zero z of x(2). (3)

Remark 1.1. A solution of the equation 2" = —\f(2™) + ug(x~) is a C*-function. There-
fore 2/(t) is continuous. If z; and z; are two consecutive zeros of x(t) then it is known
that |2/(z1)| = |2'(22)]. Thus introduction of the normalization condition in the form (3)
is justified.

Theorem 3.1 claims that the solution set is a union F' = U2, Fi of solution surfaces.
The solution surface F;" (F;") describes all C?-solutions of the problem (1) with exactly
i zeros in the interval (a,b) and negative (positive) derivative at the first after a zero.
Notion of a solution surface was introduced in [7] for the case of the Dirichlet boundary
conditions.

2 Time maps

Let Ty(ca, A) be the first zero function (the time map) for the Cauchy problem "+ f(x) =
0, z(a)=0, 2'(a) =a>0.

Theorem 2.1 If a function f satisfies conditions (A1)-(A4) then

1. the time map Ty(a, X) is a continuous function and Ty(a, \) = %t‘f <\/X> for all
a, A > 0;

2. for any o, B, \ > 0 the rescaling formula is valid

Q a?
T¢(B,N)==T <a,)\—>; 4
102 =5 T (005 )
3. for a fized o > 0:
,\IE& Tr(a, N) = 400, /\Erfoo Tr(a, A) = 0. (5)

Proof. For 1. see [3].
2. For a, B, A > 0 we have

LBy, fafBy_ 1 a | _
W’”‘ﬁ”(ﬁ) ﬁtf(ﬁa) Vol W
1 « « « o?
:—Q_tf —2 :—Tf(Oé,/\—2)
Aﬁ%ﬁ /Aﬁ% 5] 5]

3. follows from conditions (A3) and (A4): the second limit was obtained in [3], but
the first one can be proved using time map properties [6].
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3 Description and properties of a solution set

Theorem 3.1 Let functions f and g satisfy the conditions (A1)-(A4).
1. A solution set F' of the problem (1) is a union of solution surfaces

2(b—a)

P2 = {Oua) s Tyl + o) = boienm. @

Solution surfaces FZ-jE are nonempty sets for any 1 € N.
Solution surfaces F." and F; coincide for i € N.

Solution surfaces F and Fji do not intersect unless i = j.

For given © # j the solution surfaces Fii and FjjE are centro-affine equivalent under

the mapping ®; ; : R® — R3, (\, u, @) Zid, (N, 71, @), where X = (%)2/\, = (i)zu,

1
a=1a.
3

Proof. 1. follows from [2] (see also [3]) and the definition of a solution set.
2. follows from the assertions 1 and 3 of the Theorem 2.1.

3. and 4. follow from the equations (6).

5. For given i # j and a > 0 set @ = %oz. Suppose (A, p, @) € Fii:

iTe(o, N) + i Ty(a, p) =2(b—a).

Applying the rescaling formula (4), where @ replaces 3, to the previous equation one has

a _.a? a _ o
zan <a,)\@) +ZET9 (oz,,u?> =2(b—a),

g1y (a, (%)2/\) +37, (a, (%)1) =2(b—a),

J Ty (a,X) + 71, (avﬁ) = Q(b_ a)a

therefore (\, 1, @) € Fji. Since ®;- jl = ®;,; one has P, ; (in) = Fji and the surfaces F-

and Fji are centro-affine equivalent under the mapping ®; ;. [J
Remark 3.1. Since solution surfaces F* and Fji (i # j) are centro-affine equivalent they
have similar shape. Therefore it is enough to study properties of one solution surface, for
example Fi¥, in order to know properties of all the remainder solution surfaces.

In the rest of the article we focus on the problem (1) where f = g = z3 + 24 are
the concave-convex type nonlinearities and an interval (a,b) is (0,1). We consider cross
sections of the solution surface Fi© with the planes o = const, u = const and p = const-\.
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Figure 1: Two views of the solution surface F:* of the problem (1), where
f:g:a:%—i—a:‘“ and b —a =1.

4 Cross sections of a solution surface " with a plane
o = const

A cross section of a solution surface Ff with a plane @ = ap > 0 (ap - fixed) is a set
Fii|a:a0 (the curve) of all triples (A, i, ) such that

Ty(ao,A) + T, (o 1) = 209 (7)

]

In this paragraph we will identify a set F:- ’a:ao with its projection to the (A, p)-plane:
()‘7 12 aO) = (>" M)'

Proposition 4.1

o Suppose Tr(ov, \y) = @ for some N\, >0 and i € N. Then the curve Ei‘a:ao has
a vertical asymptote at A = \,.

o Suppose Ty(a, j1.) = M for some p, > 0 and i € N. Then the curve Ff‘a:ao has
a horizontal asymptote at = fi,.



70

A
30+
25+
20
351\3/ [
15F
10
15
1.0} 5k
0.5
A 0 |- A
L L L L \> L L L L L - 1 L \>
0 2 4 6 8 10 0 5 10 15 20 25 30

Figure 2: The case f = z3 +azH, b—a=1. The Figure 3: The case f =g = zI + 2 b—a=1
graphic of the function y = T (1, A) intersects with The curve Ff—L|O(:1 has a horizontal asymptote at

the line y = M at a point A = \,q. 1= Ay and a vertical asymptote at A = A,q.
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Figure 4: The case f = 23 + 2%, b—a=1. The Figure 5: The case f =g = 25 +2* b—a=1. The
graphic of the function y = T§(1.4, \) intersects  curve F* w1 4 have three unbounded components,

2(b—a)
1

with the line y = at three points A = \; three horizontal asymptotes at u = A,; and three

(1 =1,2,3). vertical asymptotes at A = \,; (j =1,2,3).
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Figure 6: The case f = 235 + 2%, b—a=1. The

graphic of the function y = T¢(2, \) intersects with
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Figure 7: The case f =g = zI + 2 b—a=1

The curve Ff—L|O(:2 has a horizontal asymptote at

the line y = M at a point A = \,q. 1= Ay and a vertical asymptote at A = A,q.
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Figure 8: The case f = z3 +z*, b—a=1. The
graphic of the function y = T7(2.6, \) intersects

with the line y =

2(b—a)
1

at a point A = \,q.

Figure 9: The case f =g = x3 +zt b—a=1.
The curve Fif ’a:2.6 have two components (one

component ir unbounded, but the second one is

separated and bounded), a horizontal asymptote at

1= Ay and a vertical asymptote at A = A,q.
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Figure 10: The case f = z3 +2%. b—a=1. The Figure 11: The case f =g = zs +azt b—a=1.
graphic of the function y = T¢(2.94, \) intersects =~ The curve Fli‘a:2‘94
with the line y = M at a point A = \,1. component ir unbounded, but the second one is

have two components (one

separated and bounded), a horizontal asymptote at
1= A1 and a vertical asymptote at A = A,q.
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Figure 12: The case f = z3 +2*. b—a=1. The Figure 13: The case f =g = zs +azt b—a=1.
graphic of the function y = T¢(3.43, \) intersects The curve Fli ’0;3.43
with the line y = M at a point A = \,q. 1= Ay and a vertical asymptote at A = A,q.

has a horizontal asymptote at
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5 Cross sections of a solution surface F;~ with a plane
W = const

A cross section of a solution surface Fi= with a plane u = po > 0 (uo - fixed) is a set
Fiﬂ;muo (the curve) of all triples (A, i, @) such that

2(b—a
Ti (e, ) + Ty (e, jtg) = % (8)
In this paragraph we will identify a set Ei ‘u:uo with its projection to the (A, «)-plane:

(A, o, @) = (A, ).

Proposition 5.1 Suppose T,(cw, o) = @ for some a, > 0 and i € N. Then the
curve Fii‘u:uo has a horizontal asymptote at o = cv,.
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Figure 1/: The case f = 23 + 24!, b— a = 1. The Figure 15: The case f =g = 23 + 24!, b—a = 1.
graphic of the function y = T (e, 1) intersects The projection of the curve Fi© =1 0 the
2(b—a)
i

with the line y = at the two points (A, @)-plane have two horizontal asymptotes at

a = g1 and o = . a = 41 and o = aio.
1 2
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Figure 16: The case f = T+ 2*' b—a=1. The Figure 17: The curve Fli‘#zg (actually curve’s
graphic of the function y = T¢(c, 3) does not projection to the (A, a)-plane) in the case
intersect with the line y = M f:g:x% +a2¥ b—a=1.

6 Cross sections of a solution surface F;- with a plane
[ = const - \

A cross section of a solution surface Fii with a plane g = k- X (k > 0 - fixed) is a set
Fﬂﬂzm (the curve) of all triples (A, i, &) such that

2(b—a)

Tr(a, \) + Ty, p) = and g =Fk- A\ 9)
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Figure 18: The case f =g = T3+ 2!, b—a = 1. The projections of the curves Fli . to the
(A, a)-plane: (A k- A a) — (A «).
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7 Conclusions

A two-parameter nonlinear oscillator with a Neumann boundary value conditions exhibits
the following features.

1. A solution set is a union of solution surfaces F=, besides any two solutions surfaces
F* and Fji (i # j) are centro-affine equivalent, in other words solution surfaces
with different numbers have the same shape.

2. Cross sections Ff’a:ao are similar to the branches of the classical Fucik spectrum
if the functions T¢(ap, A) and Ty (ap, pt) are monotone in A and p respectively.

3. It is possible that cross sections Fii’a:ao 1) have separate bounded components, 2)
have multiple unbounded components.

4. It is possible that cross sections Fii|u=uo have multiple unbounded components.

5. Suppose f = g. We conjecture that if 1) in a some neighborhood of a point (A, 1)
a solution surface FZ-jE can be expressed as the graphic of a function o« = Q(\, ),
2) the function a = Q(A, u) has a local strict extremum at the point (Ao, 1) and
ap = Q(Ao, po), then Ag = 9. This would mean that such points are

(o ho. ag) = ((%)27 (z‘ZfEVZ))z | Mzti(Zo)> ’

where 7 is a strict extremum point of the function ~v¢;(v), since the projection of
the cross section F.- ‘#: , (the curve) to the (), a)-plane due to the rescaling formula

(4) has a parametrization without self crossings: o = p;(7), A = ¢(y) (v > 0),
it it 2
where p;(v) = %((:) and ¢;(v) = <£> )
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VIIK 517.927

A. I'punanc, ®. CaapipbaeB. O MHOXKeCTBE pellleHnii HeJINHENHOTO OCIIUJIg-
TOopa ¢ AByMsd nmapamMerpamMm: 3amada Heiimana

Awunoranus. Paccmarpusaercs rpaununas 3agava r” = —\f(x7)+ug(x™) (i), 2'(a) =
0 = 2/(b) (ii), tme A\, > 0, upu srom dynkuuu f u g MOryT ObITH HEJIUHEHHBIMHU.
MuozkecrBo perrennii F' 3amaun (i), (i7) - 970 MHOXKECTBO BCeX Tpoek (A, ji, &), TaKUX
aro (A, p, 2(t)) sABIAsSeTcs HeTpUBUHATIBHBIM perrenueM 3ajaqu (i), (i1) u |2/(2)] = a B
mystx yuknun (t). OKa3bpIBAETCS, ITO MHOYKECTBO Pellenuii F' aBisieTcs 00be IMHeHTeM
1IOBEpXHOCTEl peleHuit FZ-jE (1=1,2,...), UpK 3TOM HE COBIAJAIONIME IOBEPXHOCTH PelIeHU
nenTpoachdUEHO IKBUBATeHTHB. g cayuas dbymkmmit f = g = 2° + 24! ykazann
cedenusi OBEPXHOCTH pernenuii Fi© ¢ miuockoctsiMu @ = const, (1 = const u y = const - \.

A. Gricans, F. Sadirbajevs. Par divu parametru nelineara oscilatora atri-
sinajumu kopu: Neimana problema

Anotacija. Tiek aplukota robezproblema z” = —\f(a™*) + pg(x™) (i), 2'(a) = 0 =
2'(b) (i1), kur A, > 0, pie tam funkcijas f un g var but ar1 nelinearas. Problemas (1), (i7)
atrisinajumu kopa F' sastav no visiem trijniekiem (A, i, @), ka (A, p, z(t)) ir problemas
(1), (#i) netrivials atrisinajums un |2'(z)| = « funkcijas z(¢) nullu punktos. Izradas,
ka atrisinajumu kopa F' ir atrisinajuma virsmu FZ-jE (1 = 1,2,...) apvienojums, pie tam
nesakritosas atrisinajumu virsmas ir centro-afini ekvivalentas. Tiek aplukoti atrisinajumu
virsmas Fi& gkelumi ar plakném o = const, p = const un pu = const - A nelinearitasu
f=g=2%+ 2" gadijuma.
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