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On solution set of a two-parameter nonlinear
oscillator: the Neumann problem

A. Gritsans, F. Sadyrbaev

Summary. Boundary value problems of the form x′′ = −λf(x+)+μg(x−) (i), x′(a) =
0 = x′(b) (ii) are considered, where λ, μ > 0. In our considerations functions f and g
may be nonlinear. We give description of a solution set F of the problem (i), (ii) - a
set of all triples (λ, μ, α) such that (λ, μ, x(t)) nontrivially solves the problem (i), (ii)
and |x′(z)| = α at any zero of x(t) (iii). It turns out that the solution set F is a
union of solution surfaces F±

i (i = 1, 2, . . .) and the non coinciding solution surfaces are
centro-affine equivalent. Cross sections of the solution surface F±

1 with planes α = const,
μ = const and μ = const · λ will be analyzed for the nonlinearities f = g = x3 + x41.

MSC: 34B15
Keywords: Neumann boundary value problem, time map, solution surface, centro-

affine equivalence.

1 Introduction

We consider the Neumann problem

x′′ = −λf(x+) + μg(x−), x′(a) = 0 = x′(b), (1)

where λ and μ are the positive parameters, x+ = max{x, 0}, x− = max{−x, 0} and
functions f and g satisfy the following conditions (we formulate these conditions only for
a function f , supposing that analogous conditions are fulfilled for a function g also):

(A1) f is a [0, +∞) → [0, +∞) continuous function, f(x) > 0 for all x > 0 and f(0) = 0,
besides

∫ x

0
f(s)ds → +∞ as x → +∞;

(A2) a first zero function (the time map) tf (α) to the Cauchy problem

x′′ + f(x) = 0, x(a) = 0, x′(a) = α > 0

is a (0, +∞) → (0, +∞) continuous function;

(A3) for a some k ∈ N:

f(0) = f ′(0+) = · · · = f (k−1)(0+) = 0, 0 < f (k)(0+) ≤ +∞; (2)
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(A4)
∫ x
0 f(s)ds

xκ−1 → +∞ as x → +∞ and f(x)
xκ is bounded for x large for a some κ ≥ 1.

Definition 1.1 A solution set of the problem (1) is a set F of all triples (λ, μ, α) such
that

(
λ, μ, x(t)

)
nontrivially solves the problem (1) and∣∣x′(z)

∣∣ = α, at any zero z of x(t). (3)

Remark 1.1. A solution of the equation x′′ = −λf(x+) + μg(x−) is a C2-function. There-
fore x′(t) is continuous. If z1 and z2 are two consecutive zeros of x(t) then it is known
that |x′(z1)| = |x′(z2)|. Thus introduction of the normalization condition in the form (3)
is justified.

Theorem 3.1 claims that the solution set is a union F = ∪∞
i=1F

±
i of solution surfaces.

The solution surface F+
i (F−

i ) describes all C2-solutions of the problem (1) with exactly
i zeros in the interval (a, b) and negative (positive) derivative at the first after a zero.
Notion of a solution surface was introduced in [7] for the case of the Dirichlet boundary
conditions.

2 Time maps

Let Tf (α, λ) be the first zero function (the time map) for the Cauchy problem x′′+λf(x) =
0, x(a) = 0, x′(a) = α > 0.

Theorem 2.1 If a function f satisfies conditions (A1)-(A4) then

1. the time map Tf (α, λ) is a continuous function and Tf (α, λ) = 1√
λ
tf

(
α√
λ

)
for all

α, λ > 0;

2. for any α, β, λ > 0 the rescaling formula is valid

Tf (β, λ) =
α

β
Tf

(
α, λ

α2

β2

)
; (4)

3. for a fixed α > 0:

lim
λ→0+

Tf (α, λ) = +∞, lim
λ→+∞

Tf (α, λ) = 0. (5)

Proof. For 1. see [3].
2. For α, β, λ > 0 we have

Tf (β, λ) =
1√
λ

tf

(
β√
λ

)
=

1√
λ

tf

(
α√
λ

β

α

)
=

1√
λ

tf

⎛
⎝ α√

λα2

β2

⎞
⎠ =

=
1√
λα2

β2

α

β
tf

⎛
⎝ α√

λα2

β2

⎞
⎠ =

α

β
Tf

(
α, λ

α2

β2

)
.

3. follows from conditions (A3) and (A4): the second limit was obtained in [3], but
the first one can be proved using time map properties [6].
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3 Description and properties of a solution set

Theorem 3.1 Let functions f and g satisfy the conditions (A1)-(A4).

1. A solution set F of the problem (1) is a union of solution surfaces

F±
i =

{
(λ, μ, α) : Tf (α, λ) + Tg(α, μ) =

2(b − a)

i

}
(i ∈ N). (6)

2. Solution surfaces F±
i are nonempty sets for any i ∈ N.

3. Solution surfaces F+
i and F−

i coincide for i ∈ N.

4. Solution surfaces F±
i and F±

j do not intersect unless i = j.

5. For given i 	= j the solution surfaces F±
i and F±

j are centro-affine equivalent under

the mapping Φi,j : R
3 → R

3, (λ, μ, α)
Φi,j
−→ (λ, μ, α), where λ =

(
j
i

)2
λ, μ =

(
j
i

)2
μ,

α = j
i
α.

Proof. 1. follows from [2] (see also [3]) and the definition of a solution set.
2. follows from the assertions 1 and 3 of the Theorem 2.1.
3. and 4. follow from the equations (6).
5. For given i 	= j and α > 0 set α = j

i
α. Suppose (λ, μ, α) ∈ F±

i :

i Tf (α, λ) + i Tg(α, μ) = 2(b − a).

Applying the rescaling formula (4), where α replaces β, to the previous equation one has

i
α

α
Tf

(
α, λ

α2

α2

)
+ i

α

α
Tg

(
α, μ

α2

α2

)
= 2(b − a),

j Tf

(
α,

(
j

i

)2

λ

)
+ j Tg

(
α,

(
j

i

)2

μ

)
= 2(b − a),

j Tf

(
α, λ

)
+ j Tg (α, μ) = 2(b − a),

therefore (λ, μ, α) ∈ F±
j . Since Φ−1

i,j = Φj,i one has Φi,j

(
F±

i

)
= F±

j and the surfaces F±
i

and F±
j are centro-affine equivalent under the mapping Φi,j. �

Remark 3.1. Since solution surfaces F±
i and F±

j (i 	= j) are centro-affine equivalent they
have similar shape. Therefore it is enough to study properties of one solution surface, for
example F±

1 , in order to know properties of all the remainder solution surfaces.

In the rest of the article we focus on the problem (1) where f = g = x
1
3 + x41 are

the concave-convex type nonlinearities and an interval (a, b) is (0, 1). We consider cross
sections of the solution surface F±

1 with the planes α = const, μ = const and μ = const·λ.
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Figure 1: Two views of the solution surface F±
1 of the problem (1), where

f = g = x
1
3 + x41 and b − a = 1.

4 Cross sections of a solution surface F±
1 with a plane

α = const

A cross section of a solution surface F±
i with a plane α = α0 > 0 (α0 - fixed) is a set

F±
i

∣∣
α=α0

(the curve) of all triples (λ, μ, α0) such that

Tf (α0, λ) + Tg(α0, μ) =
2(b − a)

i
. (7)

In this paragraph we will identify a set F±
i

∣∣
α=α0

with its projection to the (λ, μ)-plane:

(λ, μ, α0) 
→ (λ, μ).

Proposition 4.1

• Suppose Tf (α, λ∗) = 2(b−a)
i

for some λ∗ > 0 and i ∈ N. Then the curve F±
i

∣∣
α=α0

has
a vertical asymptote at λ = λ∗.

• Suppose Tg(α, μ∗) = 2(b−a)
i

for some μ∗ > 0 and i ∈ N. Then the curve F±
i

∣∣
α=α0

has
a horizontal asymptote at μ = μ∗.
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Figure 2: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (1, λ) intersects with
the line y = 2(b−a)

1 at a point λ = λ∗1.

Figure 3: The case f = g = x
1
3 + x41, b − a = 1.

The curve F±
1

∣∣
α=1

has a horizontal asymptote at
μ = λ∗1 and a vertical asymptote at λ = λ∗1.

Figure 4: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (1.4, λ) intersects
with the line y = 2(b−a)

1 at three points λ = λ∗j

(j = 1, 2, 3).

Figure 5: The case f = g = x
1
3 +x41, b−a = 1. The

curve F±
1

∣∣
α=1.4

have three unbounded components,
three horizontal asymptotes at μ = λ∗j and three

vertical asymptotes at λ = λ∗j (j = 1, 2, 3).
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Figure 6: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (2, λ) intersects with
the line y = 2(b−a)

1 at a point λ = λ∗1.

Figure 7: The case f = g = x
1
3 + x41, b − a = 1.

The curve F±
1

∣∣
α=2

has a horizontal asymptote at
μ = λ∗1 and a vertical asymptote at λ = λ∗1.

Figure 8: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (2.6, λ) intersects
with the line y = 2(b−a)

1 at a point λ = λ∗1.

Figure 9: The case f = g = x
1
3 + x41, b − a = 1.

The curve F±
1

∣∣
α=2.6

have two components (one
component ir unbounded, but the second one is

separated and bounded), a horizontal asymptote at
μ = λ∗1 and a vertical asymptote at λ = λ∗1.
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Figure 10: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (2.94, λ) intersects
with the line y = 2(b−a)

1 at a point λ = λ∗1.

Figure 11: The case f = g = x
1
3 + x41, b − a = 1.

The curve F±
1

∣∣
α=2.94

have two components (one
component ir unbounded, but the second one is

separated and bounded), a horizontal asymptote at
μ = λ∗1 and a vertical asymptote at λ = λ∗1.

Figure 12: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (3.43, λ) intersects
with the line y = 2(b−a)

1 at a point λ = λ∗1.

Figure 13: The case f = g = x
1
3 + x41, b − a = 1.

The curve F±
1

∣∣
α=3.43

has a horizontal asymptote at
μ = λ∗1 and a vertical asymptote at λ = λ∗1.
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5 Cross sections of a solution surface F±
1 with a plane

μ = const

A cross section of a solution surface F±
i with a plane μ = μ0 > 0 (μ0 - fixed) is a set

F±
i

∣∣
μ=μ0

(the curve) of all triples (λ, μ0, α) such that

Tf (α, λ) + Tg(α, μ0) =
2(b − a)

i
. (8)

In this paragraph we will identify a set F±
i

∣∣
μ=μ0

with its projection to the (λ, α)-plane:

(λ, μ0, α) 
→ (λ, α).

Proposition 5.1 Suppose Tg(α∗, μ0) = 2(b−a)
i

for some α∗ > 0 and i ∈ N. Then the
curve F±

i

∣∣
μ=μ0

has a horizontal asymptote at α = α∗.

Figure 14: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (α, 1) intersects
with the line y = 2(b−a)

1 at the two points
α = α∗1 and α = α∗2.

Figure 15: The case f = g = x
1
3 + x41, b − a = 1.

The projection of the curve F±
1

∣∣
μ=1

to the
(λ, α)-plane have two horizontal asymptotes at

α = α∗1 and α = α∗2.
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Figure 16: The case f = x
1
3 + x41, b − a = 1. The

graphic of the function y = Tf (α, 3) does not
intersect with the line y = 2(b−a)

1 .

Figure 17: The curve F±
1

∣∣
μ=3

(actually curve’s
projection to the (λ, α)-plane) in the case

f = g = x
1
3 + x41, b − a = 1.

6 Cross sections of a solution surface F±
1 with a plane

μ = const · λ
A cross section of a solution surface F±

i with a plane μ = k · λ (k > 0 - fixed) is a set
F±

i

∣∣
μ=k·λ (the curve) of all triples (λ, μ, α) such that

Tf (α, λ) + Tg(α, μ) =
2(b − a)

i
and μ = k · λ. (9)

Figure 18: The case f = g = x
1
3 + x41, b − a = 1. The projections of the curves F±

1

∣∣
μ=k·λ to the

(λ, α)-plane: (λ, k · λ, α) 
→ (λ, α).
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7 Conclusions

A two-parameter nonlinear oscillator with a Neumann boundary value conditions exhibits
the following features.

1. A solution set is a union of solution surfaces F±
i , besides any two solutions surfaces

F±
i and F±

j (i 	= j) are centro-affine equivalent, in other words solution surfaces
with different numbers have the same shape.

2. Cross sections F±
i

∣∣
α=α0

are similar to the branches of the classical Fuč́ık spectrum

if the functions Tf (α0, λ) and Tg(α0, μ) are monotone in λ and μ respectively.

3. It is possible that cross sections F±
i

∣∣
α=α0

1) have separate bounded components, 2)
have multiple unbounded components.

4. It is possible that cross sections F±
i

∣∣
μ=μ0

have multiple unbounded components.

5. Suppose f = g. We conjecture that if 1) in a some neighborhood of a point (λ0, μ0)
a solution surface F±

i can be expressed as the graphic of a function α = Ω(λ, μ),
2) the function α = Ω(λ, μ) has a local strict extremum at the point (λ0, μ0) and
α0 = Ω(λ0, μ0), then λ0 = μ0. This would mean that such points are

(λ0, λ0, α0) =

((
itf (γ0)

b − a

)2

,

(
itf (γ0)

b − a

)2

,
iγ0tf (γ0)

b − a

)
,

where γ0 is a strict extremum point of the function γtf (γ), since the projection of
the cross section F±

i

∣∣
μ=λ

(the curve) to the (λ, α)-plane due to the rescaling formula

(4) has a parametrization without self crossings: α = pi(γ), λ = qi(γ) (γ > 0),

where pi(γ) =
iγ tf (γ)

b−a
and qi(γ) =

(
itf (γ)

b−a

)2

.
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A. Gricāns, F. Sadirbajevs. Par divu parametru nelineāra oscilatora atri-
sinājumu kopu: Neimana problēma

Anotācija. Tiek aplūkota robežproblēma x′′ = −λf(x+) + μg(x−) (i), x′(a) = 0 =
x′(b) (ii), kur λ, μ > 0, pie tam funkcijas f un g var būt ar̄ı nelineāras. Problēmas (i), (ii)
atrisinājumu kopa F sastāv no visiem trijniekiem (λ, μ, α), ka (λ, μ, x(t)) ir problēmas
(i), (ii) netriviāls atrisinājums un |x′(z)| = α funkcijas x(t) nuļļu punktos. Izrādās,
ka atrisinājumu kopa F ir atrisinājuma virsmu F±

i (i = 1, 2, . . .) apvienojums, pie tam
nesakr̄ıtošās atrisinājumu virsmas ir centro-af̄ıni ekvivalentas. Tiek aplūkoti atrisinājumu
virsmas F±

1 šķēlumi ar plaknēm α = const, μ = const un μ = const · λ nelinearitāšu
f = g = x3 + x41 gad̄ıjumā.
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