On solution set of a two-parameter nonlinear oscillator: the Neumann problem

A. Gritsans, F. Sadyrbaev

Summary. Boundary value problems of the form $x'' = -\lambda f(x^+) + \mu g(x^-)(i)$, x'(a) = 0 = x'(b) (*ii*) are considered, where $\lambda, \mu > 0$. In our considerations functions f and g may be nonlinear. We give description of a solution set F of the problem (*i*), (*ii*) - a set of all triples (λ, μ, α) such that $(\lambda, \mu, x(t))$ nontrivially solves the problem (*i*), (*ii*) and $|x'(z)| = \alpha$ at any zero of x(t) (*iii*). It turns out that the solution set F is a union of solution surfaces F_i^{\pm} (i = 1, 2, ...) and the non coinciding solution surfaces are centro-affine equivalent. Cross sections of the solution surface F_1^{\pm} with planes $\alpha = const$, $\mu = const$ and $\mu = const \cdot \lambda$ will be analyzed for the nonlinearities $f = g = x^3 + x^{41}$.

MSC: 34B15

Keywords: Neumann boundary value problem, time map, solution surface, centroaffine equivalence.

1 Introduction

We consider the Neumann problem

$$x'' = -\lambda f(x^{+}) + \mu g(x^{-}), \quad x'(a) = 0 = x'(b), \tag{1}$$

where λ and μ are the positive parameters, $x^+ = \max\{x, 0\}$, $x^- = \max\{-x, 0\}$ and functions f and g satisfy the following conditions (we formulate these conditions only for a function f, supposing that analogous conditions are fulfilled for a function g also):

- (A1) f is a $[0, +\infty) \to [0, +\infty)$ continuous function, f(x) > 0 for all x > 0 and f(0) = 0, besides $\int_0^x f(s)ds \to +\infty$ as $x \to +\infty$;
- (A2) a first zero function (the time map) $t_f(\alpha)$ to the Cauchy problem

$$x'' + f(x) = 0, \quad x(a) = 0, \quad x'(a) = \alpha > 0$$

is a $(0, +\infty) \rightarrow (0, +\infty)$ continuous function;

(A3) for a some $k \in \mathbb{N}$:

$$f(0) = f'(0+) = \dots = f^{(k-1)}(0+) = 0, \ 0 < f^{(k)}(0+) \le +\infty;$$
(2)

Definition 1.1 A solution set of the problem (1) is a set F of all triples (λ, μ, α) such that $(\lambda, \mu, x(t))$ nontrivially solves the problem (1) and

$$|x'(z)| = \alpha, \text{ at any zero } z \text{ of } x(t).$$
(3)

Remark 1.1. A solution of the equation $x'' = -\lambda f(x^+) + \mu g(x^-)$ is a C^2 -function. Therefore x'(t) is continuous. If z_1 and z_2 are two consecutive zeros of x(t) then it is known that $|x'(z_1)| = |x'(z_2)|$. Thus introduction of the normalization condition in the form (3) is justified.

Theorem 3.1 claims that the solution set is a union $F = \bigcup_{i=1}^{\infty} F_i^{\pm}$ of solution surfaces. The solution surface F_i^+ (F_i^-) describes all C^2 -solutions of the problem (1) with exactly *i* zeros in the interval (a, b) and negative (positive) derivative at the first after *a* zero. Notion of a solution surface was introduced in [7] for the case of the Dirichlet boundary conditions.

2 Time maps

Let $T_f(\alpha, \lambda)$ be the first zero function (the time map) for the Cauchy problem $x'' + \lambda f(x) = 0$, x(a) = 0, $x'(a) = \alpha > 0$.

Theorem 2.1 If a function f satisfies conditions (A1)-(A4) then

- 1. the time map $T_f(\alpha, \lambda)$ is a continuous function and $T_f(\alpha, \lambda) = \frac{1}{\sqrt{\lambda}} t_f\left(\frac{\alpha}{\sqrt{\lambda}}\right)$ for all $\alpha, \lambda > 0;$
- 2. for any $\alpha, \beta, \lambda > 0$ the rescaling formula is valid

$$T_f(\beta,\lambda) = \frac{\alpha}{\beta} T_f\left(\alpha,\lambda\frac{\alpha^2}{\beta^2}\right); \tag{4}$$

3. for a fixed $\alpha > 0$:

$$\lim_{\lambda \to 0+} T_f(\alpha, \lambda) = +\infty, \quad \lim_{\lambda \to +\infty} T_f(\alpha, \lambda) = 0.$$
(5)

Proof. For 1. see [3]. 2. For $\alpha, \beta, \lambda > 0$ we have

$$T_f(\beta,\lambda) = \frac{1}{\sqrt{\lambda}} t_f\left(\frac{\beta}{\sqrt{\lambda}}\right) = \frac{1}{\sqrt{\lambda}} t_f\left(\frac{\alpha}{\sqrt{\lambda}}\frac{\beta}{\alpha}\right) = \frac{1}{\sqrt{\lambda}} t_f\left(\frac{\alpha}{\sqrt{\frac{\lambda\alpha^2}{\beta^2}}}\right) = \frac{1}{\sqrt{\frac{\lambda\alpha^2}{\beta^2}}} \frac{\alpha}{\beta} t_f\left(\frac{\alpha}{\sqrt{\frac{\lambda\alpha^2}{\beta^2}}}\right) = \frac{\alpha}{\beta} T_f\left(\alpha,\lambda\frac{\alpha^2}{\beta^2}\right).$$

3. follows from conditions (A3) and (A4): the second limit was obtained in [3], but the first one can be proved using time map properties [6].

3 Description and properties of a solution set

Theorem 3.1 Let functions f and g satisfy the conditions (A1)-(A4).

1. A solution set F of the problem (1) is a union of solution surfaces

$$F_i^{\pm} = \left\{ (\lambda, \mu, \alpha) : T_f(\alpha, \lambda) + T_g(\alpha, \mu) = \frac{2(b-a)}{i} \right\} \quad (i \in \mathbb{N}).$$
(6)

- 2. Solution surfaces F_i^{\pm} are nonempty sets for any $i \in \mathbb{N}$.
- 3. Solution surfaces F_i^+ and F_i^- coincide for $i \in \mathbb{N}$.
- 4. Solution surfaces F_i^{\pm} and F_j^{\pm} do not intersect unless i = j.
- 5. For given $i \neq j$ the solution surfaces F_i^{\pm} and F_j^{\pm} are centro-affine equivalent under the mapping $\Phi_{i,j} : \mathbb{R}^3 \to \mathbb{R}^3$, $(\lambda, \mu, \alpha) \xrightarrow{\Phi_{i,j}} (\overline{\lambda}, \overline{\mu}, \overline{\alpha})$, where $\overline{\lambda} = \left(\frac{j}{i}\right)^2 \lambda$, $\overline{\mu} = \left(\frac{j}{i}\right)^2 \mu$, $\overline{\alpha} = \frac{j}{i} \alpha$.

Proof. 1. follows from [2] (see also [3]) and the definition of a solution set.

- 2. follows from the assertions 1 and 3 of the Theorem 2.1.
- 3. and 4. follow from the equations (6).
- 5. For given $i \neq j$ and $\alpha > 0$ set $\overline{\alpha} = \frac{j}{i} \alpha$. Suppose $(\lambda, \mu, \alpha) \in F_i^{\pm}$:

$$i T_f(\alpha, \lambda) + i T_g(\alpha, \mu) = 2(b-a).$$

Applying the rescaling formula (4), where $\overline{\alpha}$ replaces β , to the previous equation one has

$$i\frac{\overline{\alpha}}{\alpha}T_f\left(\overline{\alpha},\lambda\frac{\overline{\alpha}^2}{\alpha^2}\right) + i\frac{\overline{\alpha}}{\alpha}T_g\left(\overline{\alpha},\mu\frac{\overline{\alpha}^2}{\alpha^2}\right) = 2(b-a),$$

$$jT_f\left(\overline{\alpha},\left(\frac{j}{i}\right)^2\lambda\right) + jT_g\left(\overline{\alpha},\left(\frac{j}{i}\right)^2\mu\right) = 2(b-a),$$

$$jT_f\left(\overline{\alpha},\overline{\lambda}\right) + jT_g\left(\overline{\alpha},\overline{\mu}\right) = 2(b-a),$$

therefore $(\overline{\lambda}, \overline{\mu}, \overline{\alpha}) \in F_j^{\pm}$. Since $\Phi_{i,j}^{-1} = \Phi_{j,i}$ one has $\Phi_{i,j}(F_i^{\pm}) = F_j^{\pm}$ and the surfaces F_i^{\pm} and F_j^{\pm} are centro-affine equivalent under the mapping $\Phi_{i,j}$. \Box

Remark 3.1. Since solution surfaces F_i^{\pm} and F_j^{\pm} $(i \neq j)$ are centro-affine equivalent they have similar shape. Therefore it is enough to study properties of one solution surface, for example F_1^{\pm} , in order to know properties of all the remainder solution surfaces.

In the rest of the article we focus on the problem (1) where $f = g = x^{\frac{1}{3}} + x^{41}$ are the concave-convex type nonlinearities and an interval (a, b) is (0, 1). We consider cross sections of the solution surface F_1^{\pm} with the planes $\alpha = const$, $\mu = const$ and $\mu = const \cdot \lambda$.

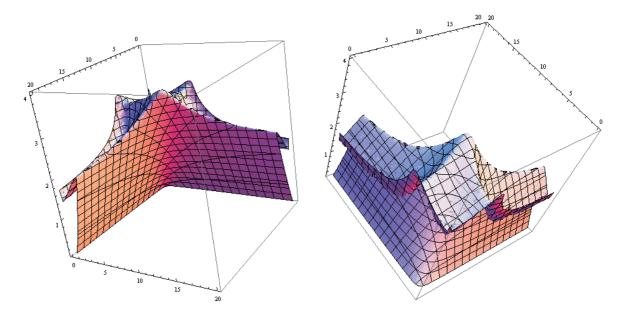


Figure 1: Two views of the solution surface F_1^{\pm} of the problem (1), where $f = g = x^{\frac{1}{3}} + x^{41}$ and b - a = 1.

4 Cross sections of a solution surface F_1^{\pm} with a plane $\alpha = const$

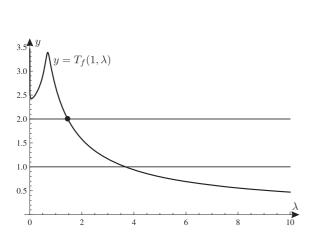
A cross section of a solution surface F_i^{\pm} with a plane $\alpha = \alpha_0 > 0$ (α_0 - fixed) is a set $F_i^{\pm}|_{\alpha=\alpha_0}$ (the curve) of all triples (λ, μ, α_0) such that

$$T_f(\alpha_0, \lambda) + T_g(\alpha_0, \mu) = \frac{2(b-a)}{i}.$$
(7)

In this paragraph we will identify a set $F_i^{\pm}|_{\alpha=\alpha_0}$ with its projection to the (λ, μ) -plane: $(\lambda, \mu, \alpha_0) \mapsto (\lambda, \mu)$.

Proposition 4.1

- Suppose $T_f(\alpha, \lambda_*) = \frac{2(b-a)}{i}$ for some $\lambda_* > 0$ and $i \in \mathbb{N}$. Then the curve $F_i^{\pm}|_{\alpha=\alpha_0}$ has a vertical asymptote at $\lambda = \lambda_*$.
- Suppose $T_g(\alpha, \mu_*) = \frac{2(b-a)}{i}$ for some $\mu_* > 0$ and $i \in \mathbb{N}$. Then the curve $F_i^{\pm}|_{\alpha=\alpha_0}$ has a horizontal asymptote at $\mu = \mu_*$.



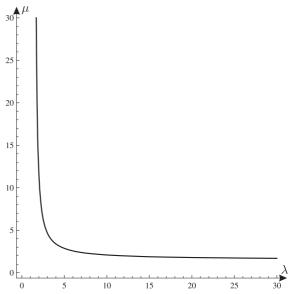


Figure 2: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The graphic of the function $y = T_f(1, \lambda)$ intersects with the line $y = \frac{2(b-a)}{1}$ at a point $\lambda = \lambda_{*1}$.

Figure 3: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The curve $F_1^{\pm}|_{\alpha=1}$ has a horizontal asymptote at $\mu = \lambda_{*1}$ and a vertical asymptote at $\lambda = \lambda_{*1}$.

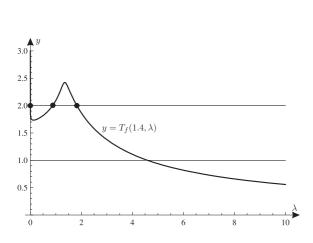


Figure 4: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The graphic of the function $y = T_f(1.4, \lambda)$ intersects with the line $y = \frac{2(b-a)}{1}$ at three points $\lambda = \lambda_{*j}$ (j = 1, 2, 3).

Figure 5: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The curve $F_1^{\pm}|_{\alpha=1.4}$ have three unbounded components, three horizontal asymptotes at $\mu = \lambda_{*j}$ and three vertical asymptotes at $\lambda = \lambda_{*j}$ (j = 1, 2, 3).

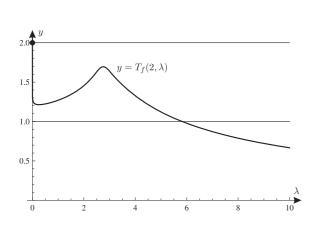


Figure 6: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The graphic of the function $y = T_f(2, \lambda)$ intersects with the line $y = \frac{2(b-a)}{1}$ at a point $\lambda = \lambda_{*1}$.

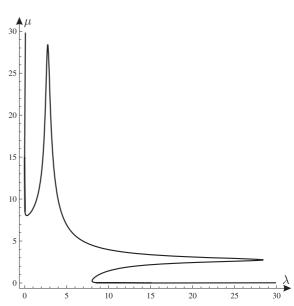


Figure 7: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The curve $F_1^{\pm}|_{\alpha=2}$ has a horizontal asymptote at $\mu = \lambda_{*1}$ and a vertical asymptote at $\lambda = \lambda_{*1}$.

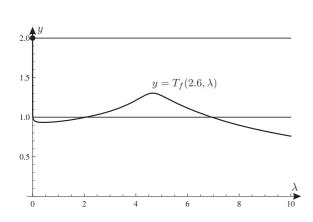


Figure 8: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The graphic of the function $y = T_f(2.6, \lambda)$ intersects with the line $y = \frac{2(b-a)}{1}$ at a point $\lambda = \lambda_{*1}$.

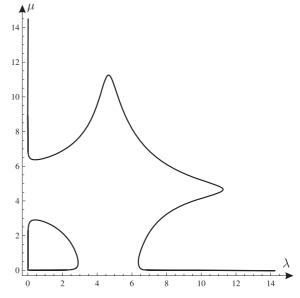


Figure 9: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The curve $F_1^{\pm}|_{\alpha=2.6}$ have two components (one component ir unbounded, but the second one is separated and bounded), a horizontal asymptote at $\mu = \lambda_{*1}$ and a vertical asymptote at $\lambda = \lambda_{*1}$.

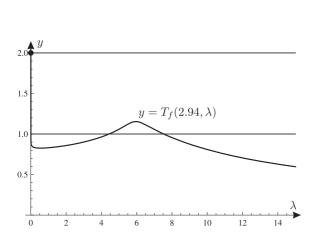


Figure 10: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The graphic of the function $y = T_f(2.94, \lambda)$ intersects with the line $y = \frac{2(b-a)}{1}$ at a point $\lambda = \lambda_{*1}$.

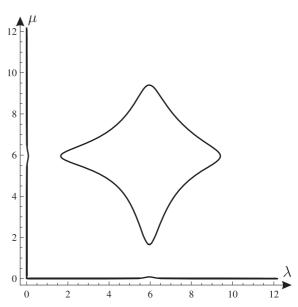


Figure 11: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The curve $F_1^{\pm}|_{\alpha=2.94}$ have two components (one component ir unbounded, but the second one is separated and bounded), a horizontal asymptote at $\mu = \lambda_{*1}$ and a vertical asymptote at $\lambda = \lambda_{*1}$.

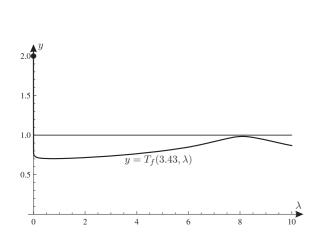


Figure 12: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The with the line $y = \frac{2(b-a)}{1}$ at a point $\lambda = \lambda_{*1}$.

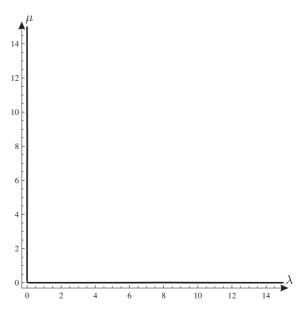


Figure 13: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. graphic of the function $y = T_f(3.43, \lambda)$ intersects The curve $F_1^{\pm}|_{\alpha=3.43}$ has a horizontal asymptote at $\mu = \lambda_{*1}$ and a vertical asymptote at $\lambda = \lambda_{*1}$.

5 Cross sections of a solution surface F_1^{\pm} with a plane $\mu = const$

A cross section of a solution surface F_i^{\pm} with a plane $\mu = \mu_0 > 0$ (μ_0 - fixed) is a set $F_i^{\pm}|_{\mu=\mu_0}$ (the curve) of all triples (λ, μ_0, α) such that

$$T_f(\alpha, \lambda) + T_g(\alpha, \mu_0) = \frac{2(b-a)}{i}.$$
(8)

In this paragraph we will identify a set $F_i^{\pm}|_{\mu=\mu_0}$ with its projection to the (λ, α) -plane: $(\lambda, \mu_0, \alpha) \mapsto (\lambda, \alpha)$.

Proposition 5.1 Suppose $T_g(\alpha_*, \mu_0) = \frac{2(b-a)}{i}$ for some $\alpha_* > 0$ and $i \in \mathbb{N}$. Then the curve $F_i^{\pm}|_{\mu=\mu_0}$ has a horizontal asymptote at $\alpha = \alpha_*$.

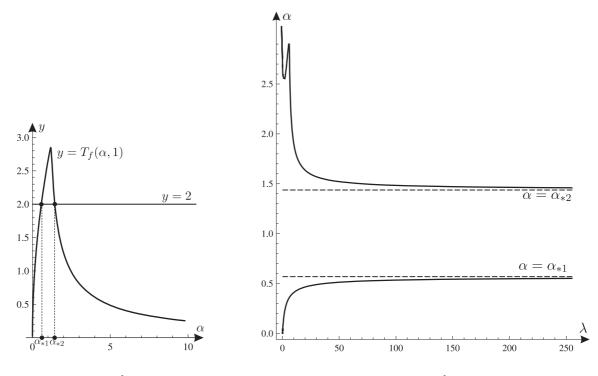


Figure 14: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The Figure 15: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. graphic of the function $y = T_f(\alpha, 1)$ intersects with the line $y = \frac{2(b-a)}{1}$ at the two points $\alpha = \alpha_{*1}$ and $\alpha = \alpha_{*2}$. The projection of the curve $F_1^{\pm}|_{\mu=1}$ to the (λ, α) -plane have two horizontal asymptotes at $\alpha = \alpha_{*1}$ and $\alpha = \alpha_{*2}$.

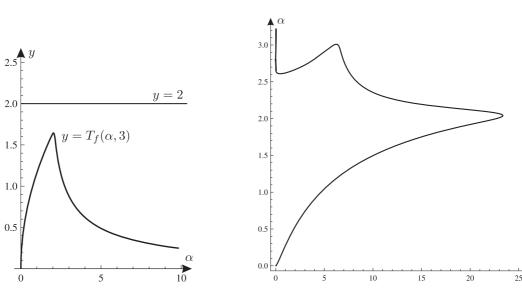


Figure 16: The case $f = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The Figure 17: The curve $F_1^{\pm}|_{\mu=3}$ (actually curve's graphic of the function $y = T_f(\alpha, 3)$ does not intersect with the line $y = \frac{2(b-a)}{1}$.

projection to the (λ, α) -plane) in the case $f = g = x^{\frac{1}{3}} + x^{41}, b - a = 1.$

Cross sections of a solution surface F_1^{\pm} with a plane 6 $\mu = const \cdot \lambda$

A cross section of a solution surface F_i^{\pm} with a plane $\mu = k \cdot \lambda$ (k > 0 - fixed) is a set $F_i^{\pm}|_{\mu=k\cdot\lambda}$ (the curve) of all triples (λ,μ,α) such that

$$T_f(\alpha, \lambda) + T_g(\alpha, \mu) = \frac{2(b-a)}{i} \text{ and } \mu = k \cdot \lambda.$$
 (9)

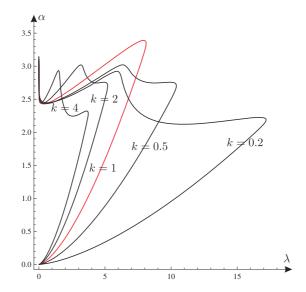


Figure 18: The case $f = g = x^{\frac{1}{3}} + x^{41}$, b - a = 1. The projections of the curves $F_1^{\pm}|_{\mu=k\cdot\lambda}$ to the (λ, α) -plane: $(\lambda, k \cdot \lambda, \alpha) \mapsto (\lambda, \alpha)$.

74

7 Conclusions

A two-parameter nonlinear oscillator with a Neumann boundary value conditions exhibits the following features.

- 1. A solution set is a union of solution surfaces F_i^{\pm} , besides any two solutions surfaces F_i^{\pm} and F_j^{\pm} $(i \neq j)$ are centro-affine equivalent, in other words solution surfaces with different numbers have the same shape.
- 2. Cross sections $F_i^{\pm}|_{\alpha=\alpha_0}$ are similar to the branches of the classical Fučík spectrum if the functions $T_f(\alpha_0, \lambda)$ and $T_g(\alpha_0, \mu)$ are monotone in λ and μ respectively.
- 3. It is possible that cross sections $F_i^{\pm}|_{\alpha=\alpha_0}$ 1) have separate bounded components, 2) have multiple unbounded components.
- 4. It is possible that cross sections $F_i^{\pm}|_{\mu=\mu_0}$ have multiple unbounded components.
- 5. Suppose f = g. We conjecture that if 1) in a some neighborhood of a point (λ_0, μ_0) a solution surface F_i^{\pm} can be expressed as the graphic of a function $\alpha = \Omega(\lambda, \mu)$, 2) the function $\alpha = \Omega(\lambda, \mu)$ has a local strict extremum at the point (λ_0, μ_0) and $\alpha_0 = \Omega(\lambda_0, \mu_0)$, then $\lambda_0 = \mu_0$. This would mean that such points are

$$(\lambda_0, \lambda_0, \alpha_0) = \left(\left(\frac{it_f(\gamma_0)}{b-a} \right)^2, \left(\frac{it_f(\gamma_0)}{b-a} \right)^2, \frac{i\gamma_0 t_f(\gamma_0)}{b-a} \right),$$

where γ_0 is a strict extremum point of the function $\gamma t_f(\gamma)$, since the projection of the cross section $F_i^{\pm}|_{\mu=\lambda}$ (the curve) to the (λ, α) -plane due to the rescaling formula (4) has a parametrization without self crossings: $\alpha = p_i(\gamma), \ \lambda = q_i(\gamma) \ (\gamma > 0),$ where $p_i(\gamma) = \frac{i\gamma t_f(\gamma)}{b-a}$ and $q_i(\gamma) = \left(\frac{it_f(\gamma)}{b-a}\right)^2$.

References

- A. Gritsans, F. Sadyrbaev. On nonlinear Fučík type spectra, Math. Model. Anal., 13(2), pp. 203-210, 2008.
- A. Gritsans, F. Sadyrbaev. Nonlinear Spectra: the Neumann Problem, Math. Model. Anal., 14(1), pp. 33–42, 2009.
- A. Gritsans and F. Sadyrbaev. Time map formulae and their applications, Proceedings LU MII "Mathematics. Differential Equations", 8, pp. 72–93, 2008.
- 4. A. Gritsans, F. Sadyrbaev. Nonlinear spectra for parameter dependent ordinary differential equations, *Nonlinear Anal., Model. Control*, **12**(2), pp. 253-267, 2007.
- A. Kufner, S. Fučík. Nonlinear Differential Equations, Elsevier, Amsterdam-Oxford-New York, 1980.
- 6. Z. Opial. Sur les périodes des solutions de l'équation différentielle x'' + g(x) = 0, Ann. Polon. Math., 10, pp. 49-72, 1961.

 F. Sadyrbaev. Multiplicity in parameter-dependent problems for ordinary differential equations, *Math. Model. Anal.*, 14(4), pp. 503–514, 2009.

УДК 517.927

А. Грицанс, Ф. Садырбаев. О множестве решений нелинейного осцилятора с двумя параметрами: задача Неймана

Аннотация. Рассматривается граничная задача $x'' = -\lambda f(x^+) + \mu g(x^-)(i), x'(a) = 0 = x'(b)$ (*ii*), где $\lambda, \mu > 0$, при этом функции f и g могут быть нелинейными. Множество решений F задачи (*i*), (*ii*) - это множество всех троек (λ, μ, α), таких что ($\lambda, \mu, x(t)$) является нетривиальным решением задачи (*i*), (*ii*) и $|x'(z)| = \alpha$ в нулях функции x(t). Оказывается, что множество решений F является объединением поверхностей решений F_i^{\pm} (i = 1, 2, ...), при этом не совпадающие поверхности решений центроаффинно эквивалентны. Для случая функций $f = g = x^3 + x^{41}$ указаны сечения поверхности решений F_1^{\pm} с плоскостями $\alpha = const$, $\mu = const$ и $\mu = const \cdot \lambda$.

A. Gricāns, F. Sadirbajevs. Par divu parametru nelineāra oscilatora atrisinājumu kopu: Neimana problēma

Anotācija. Tiek aplūkota robežproblēma $x'' = -\lambda f(x^+) + \mu g(x^-)$ (i), x'(a) = 0 = x'(b) (ii), kur $\lambda, \mu > 0$, pie tam funkcijas f un g var būt arī nelineāras. Problēmas (i), (ii) atrisinājumu kopa F sastāv no visiem trijniekiem (λ, μ, α) , ka $(\lambda, \mu, x(t))$ ir problēmas (i), (ii) netriviāls atrisinājums un $|x'(z)| = \alpha$ funkcijas x(t) nuļļu punktos. Izrādās, ka atrisinājumu kopa F ir atrisinājuma virsmu F_i^{\pm} (i = 1, 2, ...) apvienojums, pie tam nesakrītošās atrisinājumu virsmas ir centro-afīni ekvivalentas. Tiek aplūkoti atrisinājumu virsmas F_1^{\pm} šķēlumi ar plaknēm $\alpha = const, \ \mu = const$ un $\mu = const \cdot \lambda$ nelinearitāšu $f = g = x^3 + x^{41}$ gadījumā.

Received 25.07.2009

Daugavpils University Department of Natural Sciences and Mathematics Daugavpils, Parades str. 1 arminge@inbox.lv felix@latnet.lv