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The Upper and Lower Functions Method
for One-dimensional Φ-Laplacians

A.Ja. Lepin, L.A. Lepin and F. Zh. Sadyrbaev

Summary. We consider equation (φ(t, x, x′))′ = f(t, x, x′) with the boundary condi-
tions x(a) = A, x(b) = B. Upper and lower functions are defined in a relatively general
manner. It is shown that this definition is best possible in some sense. In the second part
generalizations of Bernstein - Nagumo type conditions are developed for the case under
consideration.

MSC: 34B15, 34C25

1 Introduction

The classical result (which can be found, for example, in [1, chapter 1, theorem 1.5.1], or
[13, chapter 3, §1, theorem 1]) for the boundary value problem

x′′ = f(t, x), t ∈ I := [a, b], f ∈ C(I × IR, IR)

x(a) = A, x(b) = B (1)

states that a solution to this problem exists if there are two functions α, β ∈ C2(I, IR)
with the properties:
(C0) α′′(t) ≥ f(t, α(t)), β′′(t) ≤ f(t, β(t));
(C1) α(t) ≤ β(t) ∀t ∈ I;
(C2) α(a) ≤ A ≤ β(a), α(b) ≤ B ≤ β(b).
Moreover, the existence of a solution x, which satisfies the estimate α ≤ x ≤ β, is assured.
In the case of a more general equation

x′′ = f(t, x, x′) (2)

with a continuous right side the so called Bernstein - Nagumo type conditions should be
imposed additionally in order to guarantee solvability of the problem (2), (1). If the ratio
f(t,x,y)

y2 is bounded for y large in modulus uniformly in (t, x) then it is used to say that the
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Bernstein condition is fulfilled which (together with the existence of α and β) is enough
for existence of a solution to the problem (2), (1). For discussion on the method of upper
and lower functions and Bernstein - Nagumo type conditions one may consult the books
[1], [10, Ch. XII], [13, Ch. 3].

In this paper we study equation

(φ(t, x, x′))′ = f(t, x, x′) (3)

with φ ∈ C(I × IR2, IR) strictly increasing in x′ function and f being a Carathéodory
function. We mention the following papers devoted to the same subject, [7], [5], [18], [9].
Evidently, (3) is a generalization of equation (2). Various areas, where equations of the
form (3) arise, are indicated in references above. Let us mention also that the Euler -

Lagrange equation for the functional J(x) =
∫ b

a
L(t, x, x′) dt also is of the form (3).

Our goal in this paper is two-fold. First, we define upper and lower functions for
equation (3) and show that this definition is final in some sense. Roughly speaking, we
show that the class of lower functions according to our definition coincides with the class
of all Lipschitz functions possessing the property of the one-sided solvability from above
with respect to equation (3). Analogously the class of upper functions coincides with the
class of all Lipschitz functions possessing the property of the one-sided solvability from
below. Precise definitions and statements of results are given in the Section 2. Analogous
results for the second order equations in the form (2) where obtained in the book [14,
Ch. 1]. Second, we develope a set of Bernstein - Nagumo type conditions which take into
account the specific form of equation (3). The Section 3 is devoted to Bernstein - Nagumo
type conditions and contains discussion on the subject.

2 Upper and lower functions

Suppose that φ in (3) is as described in the previous section and f is a Carathéodory
function, that is, (i) f(·, x, y) is measurable in I for (x, y) ∈ IR2 fixed; (ii) f(t, ·, ·) is
continuous in IR2 for a.e. t ∈ I; (iii) for any compact set P ⊂ IR2 there exists a function
g ∈ L1(I, IR) such that |f(t, x, y)| ≤ g(t) holds in I × P.

Definition 1. Let c ∈ [a, b) and d ∈ (c, b]. A function x ∈ C1([c, d], IR) is a solution of
the equation (3), if φ(t, x(t), x′(t)) : [c, d] → IR is an absolutely continuous function and
equation (3) is satisfied a.e. in [c, d].

Definition 2. Functions α, β ∈ Lip(I, IR) will be called lower and upper functions for
equation (3) if for any points t1 ∈ (a, b) and t2 ∈ (t1, b), in which the first order derivatives
exist, the inequalities

φ(t2, α(t2), α
′(t2))− φ(t1, α(t1), α

′(t1)) ≥
∫ t2

t1

f(s, α(s), α′(s)) ds

φ(t2, β(t2), β
′(t2))− φ(t1, β(t1), β

′(t1)) ≤
∫ t2

t1

f(s, β(s), β′(s)) ds

(4)

hold respectively.
The sets of all lower and all upper functions will be denoted by A(I, IR) and B(I, IR)

respectively.
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Lemma 2.1 If α ∈ A(I, IR) and β ∈ B(I, IR), then the left derivatives α′l(t), β
′
l(t) exist

for any t ∈ (a, b], the right derivatives α′r(t), β
′
r(t) exist for any t ∈ [a, b), the inequalities

α′l(t) ≤ α′r(t) and β′l(t) ≥ β′r(t) hold in (a, b), the following relations

limτ→t+ α′l(τ) = limτ→t+ α′r(τ) = α′r(t), t ∈ [a, b)
limτ→t− α′l(τ) = limτ→t− α′r(τ) = α′l(t), t ∈ (a, b]
limτ→t+ β′l(τ) = limτ→t+ β′r(τ) = β′r(t), t ∈ [a, b)
limτ→t− β′l(τ) = limτ→t− β′r(τ) = β′l(t), t ∈ (a, b]

(5)

are valid and for any t1 ∈ [a, b) and t2 ∈ (t1, b] the inequalities

φ(t2, α(t2), α
′
l(t2))− φ(t1, α(t1), α

′
r(t1)) ≥

∫ t2

t1

f(s, α(s), α′(s)) ds

φ(t2, β(t2), β
′
l(t2))− φ(t1, β(t1), β

′
r(t1)) ≤

∫ t2

t1

f(s, β(s), β′(s)) ds

(6)

are satisfied.

Proof. Let Tα be the set of those τ ∈ (a, b), for which the derivative α′(τ) exists. We
will show first that the limit

lim
τ→t+

α′(τ) =: αr(t), t ∈ [a, b) (7)

exists, τ ∈ Tα. Suppose that

lim inf
τ→t+

α′(τ) < c1 < c2 < lim sup
τ→t+

α′(τ). (8)

Pick t1, t2 ∈ Tα such that t < t1 < t2, α′(t1) > c2 and α′(t2) < c1. The first of the
inequalities (4) and monotonicity of φ together imply that

∫ t2

t1

f(s, α(s), α′(s)) ds ≤ φ(t2, α(t2), α
′(t2))− φ(t1, α(t1), α

′(t1))

< φ(t2, α(t2), c1)− φ(t1, α(t1), c2).
(9)

On the other hand, if t1 and t2 are sufficiently close to t, then
∫ t2

t1

f(s, α(s), α′(s)) ds >
φ(t, α(t), c1)− φ(t, α(t), c2)

2

> φ(t2, α(t2), c1)− φ(t1, α(t1), c2).

(10)

The contradiction obtained means that the limit in (7) exists.
The existence of a limit in (7) and an absolute continuity of α together imply that

the derivative α′r(t) = αr(t) exists. The existence of α′l(t) for any t ∈ (a, b] can be shown
analogously. If α′r(t) < c1 < c2 < α′l(t) for t ∈ (a, b) then for t1 < t < t2 the inequalities
(9) and (10) hold and a contradiction follows also. Hence α′l(t) ≤ α′r(t), t ∈ (a, b). The
relations

lim
τ→t+

α′(τ) = α′r(t), t ∈ [a, b),

lim
τ→t−

α′(τ) = α′l(t), t ∈ (a, b]

imply formulas (5) and (6) with respect to α. Proofs for β are similar.
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Lemma 2.2 If α1, α2 ∈ A(I, IR), then max{α1, α2} ∈ A(I, IR). If β1, β2 ∈ B(I, IR), then
min{β1, β2} ∈ B(I, IR).

Proof. It is clear that α = max{α1, α2} ∈ Lip(I, IR). Let us show that the condition
(4) holds for α. Denote J = {t ∈ (a, b) : α1(t) < α2(t)}. Clearly J is a union of open
intervals. In cases of J = ∅ or J = (a, b) the condition (4) evidently holds. Consider the
case of J = (a1, b1). Let t1 ∈ (a, a1) and t2 ∈ (a1, b1). Then

φ(a1, α1(a1), α
′
1l(a1))− φ(t1, α1(t1), α

′
1(t1))

+φ(t2, α2(t2), α
′
2(t2))− φ(a1, α2(a1), α

′
2r(a1))

≥
∫ a1

t1

f(t, α1(t), α
′
1(t)) dt +

∫ t2

a1

f(t, α2(t), α
′
2(t)) dt

=

∫ t2

t1

f(t, α(t), α′(t)) dt.

The inequality α′1l(a1) ≤ α′2r(a1) implies that

φ(a1, α(a1), α
′
1l(a1))− φ(a1, α(a1), α

′
2r(a1)) ≤ 0.

Hence the condition (4). Other cases of location of t1 and t2 can be treated similarly.
Consider the case of J = (a1, b1) ∪ . . . ∪ (an, bn). Let α3(t) = α1(t), t ∈ I \ [a1, b1] and

α3(t) = α2(t), t ∈ [a1, b1]. It follows from the arguments above that the condition (4) is
fulfilled for α3. Let α4(t) = α3(t), t ∈ I \ [a2, b2] and α4(t) = α2(t), t ∈ [a2, b2]. It is clear
that the condition (4) is fulfilled for α4. Proceeding in the same manner, one can prove
that α := αn+2 satisfies the condition (4).

If there are infinitely many intervals (ai, bi), a sequence of αi (i = 3, 4, . . .) can be
constructed as above. It is clear that

φ(t2, αi(t2), α
′
i(t2))− φ(t1, αi(t1), α

′
i(t1)) ≥

∫ t2

t1

f(t, αi(t), α
′
i(t)) dt.

The condition (4) follows from the inequality above by passing to the limit as i →∞.
Proof for β = min{β1, β2} is similar.

Definition 3. We say that a one-sided local solvability from above holds for a function
α : I → IR, if for any τ ∈ I and ε ∈ (0, +∞) there exists δ ∈ (0, +∞) such that for any
t1, t2 ∈ I, which satisfy the inequalities τ − δ < t1 < t2 < τ + δ, a solution x : [t1, t2] → IR
of the equation (3) exists with the properties

x(t1) = α(t1), x(t2) = α(t2), α(t) ≤ x(t) ≤ α(t) + ε ∀t ∈ [t1, t2].

Similarly, a one-sided local solvability from below holds for a function β : I → IR, if for
any τ ∈ I and ε ∈ (0, +∞) there exists δ ∈ (0, +∞) such that for any t1, t2 ∈ I, which
satisfy the inequalities τ − δ < t1 < t2 < τ + δ, a solution x : [t1, t2] → IR of the equation
(3) exists with the properties

x(t1) = β(t1), x(t2) = β(t2), β(t) ≥ x(t) ≥ β(t)− ε ∀t ∈ [t1, t2].

We prove below the following statement.
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Theorem 2.1 If α ∈ Lip(I, IR) satisfies the one-sided local solvability condition from
above then α ∈ A(I, IR). If β ∈ Lip(I, IR) satisfies the one-sided local solvability condition
from below then β ∈ B(I, IR).

Proof. Construct a sequence of αn ∈ A(I, IR) (n = 1, 2, . . .) in the following way.
Let t ∈ I, ε = 1 and let δt be a respective constant mentioned in Definition 3. A system
of intervals (t− δt, t + δt) form a covering of the interval I. Consider a finite subcovering
which will be denoted (ai, bi) (i = 1, . . . , m). We may assume without loss of generality
that

a1 < a < a2 < b1 < a3 < b2 < . . . < am < bm−1 < b < bm.

Pick ci ∈ (ai+1, bi) (i = 1, . . . , m − 1) so that there exist the derivatives α′(ci). We may
assume that ci+1 − ci < 1 (i = 0, . . . , m − 1), where c0 = a and cm = b. Otherwise new
partition points can be added. On any interval [ci−1, ci] (i = 1, . . . , m) there exists a
solution xi : [ci−1, ci] → IR of equation (3) such that xi(ci−1) = α(ci−1), xi(ci) = α(ci)
and α(t) ≤ xi(t) ≤ α(t) + 1, t ∈ [ci−1, ci]. Define α1 as

α1(t) = xi(t), t ∈ [ci−1, ci], i = 1, . . . , m.

A function xi will be called an arc with the end points at ci−1 and ci. Let us show that
α1 ∈ A(I, IR). It is clear that α1 ∈ Lip(I, IR). If t1 and t2 belong to the same interval
[ci−1, ci], the inequality (4) is evident. Consider the case of t1 ∈ [ci−1, ci), t2 ∈ (ci, ci+1].
Then

φ(ci, α1(ci), α
′
1l(ci))− φ(t1, α1(t1), α

′
1(t1)) =

∫ ci

t1

f(s, α1(s), α
′
1(s)) ds, (11)

φ(t2, α1(t2), α
′
1(t2))− φ(ci, α1(ci), α

′
1r(ci)) =

∫ t2

ci

f(s, α1(s), α
′
1(s)) ds. (12)

The inequalities α′1l(ci) ≤ α′1r(ci) and (11), (12) together imply (4). Proof for other cases
can be obtained by induction.

To construct α2 apply the above arguments to intervals [ci−1, ci] with ε = 1
2
. We may

assume now that the length of the maximal interval is less than 1
2
. Proceeding in the same

manner, construct αn assuming that ε = 1
n

and the length of the maximal interval is less
than 1

n
. Evidently the sequence of αn uniformly converges to α.

Let us show now that if α′(t) exists for some t ∈ (a, b), which is not a partition point,
then α′n(t) → α′(t) as n → ∞. For any ε ∈ (0, 1) there exists δ ∈ (0, +∞) such that
a < t− δ < t + δ < b, the graph of α(τ) for any τ ∈ (t− δ, t + δ) lies between the straight
lines defined by α(t) + (α′(t) + ε)(τ − t) and α(t) + (α′(t)− ε)(τ − t), and

2

∫ t+δ

t−δ

g(s) ds < min{φ(t, α(t), α′(t) + 2ε) − φ(t, α(t), α′(t) + ε),

φ(t, α(t), α′(t)− ε) − φ(t, α(t), α′(t)− 2ε)},
where g (a function from the Carathéodory conditions) depends on α(t) and α′(t) and
does not depend on n. Choose n so large that there exists an arc x : [c, d] → IR of the
function αn with the end points c ∈ (t− δ, t) and d ∈ (t, t + δ) and

φ(τ1, αn(τ1), α
′(t) + 2ε)− φ(τ2, αn(τ2), α

′(t) + ε)
> (φ(t, α(t), α′(t) + 2ε)− φ(t, α(t), α′(t) + ε))/2,

φ(τ1, αn(τ1), α
′(t)− ε)− φ(τ2, αn(τ2), α

′(t)− 2ε)
> (φ(t, α(t), α′(t)− ε)− φ(t, α(t), α′(t)− 2ε))/2

(13)
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for τ1, τ2 ∈ [c, d]. Then
α′(t)− 2ε ≤ x′(t) ≤ α′(t) + 2ε. (14)

Indeed, if x′(t) > α′(t) + 2ε, then there exist t1, t2 ∈ (t, d] such that t1 < t2, α′n(t1) =
α′(t) + 2ε, α′n(t2) = α′(t) + ε and α′(t) + ε ≤ α′n(τ) ≤ α′(t) + 2ε, τ ∈ (t1, t2). Hence

−
∫ t2

t1

g(s) ds ≤
∫ t2

t1

f(s, αn(s), α′n(s)) ds

≤ φ(t2, αn(t2), α
′(t) + ε)− φ(t1, αn(t1), α

′(t) + 2ε)

< (φ(t, α(t), α′(t) + ε)− φ(t, α(t), α′(t) + 2ε))/2

< −
∫ t+δ

t−δ

g(s) ds.

The contradiction obtained proves the estimate (14) from above. The estimate from below
can be proved similarly. The estimate (14) implies that α′n(t) converge to α′(t).

Let M = max{|α(t)| : t ∈ I} + 1, α ∈ LipL(I, IR), P = [−M, M ] × [−L − 1, L + 1]
and

2ε1 = min{φ(t, α(t), L + 1)− φ(t, α(t), L) : t ∈ I},
2ε2 = min{φ(t, α(t),−L)− φ(t, α(t),−L− 1) : t ∈ I}.

Let g be a summable function from the Carathéodory conditions, which corresponds to
the set P. Let n0 be such that

|
∫ t2

t1

g(t) dt| < min{ε1, ε2}, t1, t2 ∈ I, |t1 − t2| < 1

n0

,

φ(t2, αn(t2), L + 1)− φ(t1, αn(t1), L) > ε1, t1, t2 ∈ I, |t1 − t2| < 1

n0

, n > n0,

φ(t2, αn(t2),−L)− φ(t1, αn(t1),−L− 1) > ε2, t1, t2 ∈ I, |t1 − t2| < 1

n0

, n > n0.

We show now that αn ∈ LipL+1(I, IR), n > n0. If there exists τ ∈ [c, d] for an arc
x : [c, d] → IR of αn such that x′(τ) > L + 1, then there exist t1, t2 ∈ [c, d] such that
x′(t1) = L, x′(t2) = L + 1, t2 < t1, and L < x′(t) < L + 1, t ∈ (t2, t1). We have then that

ε1 < φ(t2, x(t2), L + 1)− φ(t1, x(t1), L) ≤
∫ t2

t1

f(t, x(t), x′(t))dt ≤
∫ t1

t2

g(t)dt < ε1

and this proves the estimate α′n(t) ≤ L+1, t ∈ I, n > n0. The inequality −L−1 ≤ α′n(t),
t ∈ I, n > n0 can be proved similarly.

Passing to the limit in

φ(t2, αn(t2), α
′
n(t2))− φ(t1, αn(t1), α

′
n(t1)) ≥

∫ t2

t1

f(s, αn(s), α′n(s)) ds,

one gets the inequality (4) for any points of Tα except possibly the partition points. It
follows from the proof of Lemma 2.1 that the first condition in (6) holds if the first
condition in (4) is true for any set T ⊂ Tα of full measure. Hence α ∈ A(I, IR).

Proof for β can be conducted similarly.
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Theorem 2.2 If α ∈ A(I, IR) then α satisfies the one-sided local solvability condition
from above. If β ∈ B(I, IR) then β satisfies the one-sided local solvability condition from
below.

Proof. Let L be a Lipschitz constant for α. First we prove that there exists δ ∈
(0, +∞) such that for any c ∈ [a, b) and d ∈ (c, b] the inequality d − c < δ implies the
existence of a solution x : [c, d] → IR to the Dirichlet problem

(φ(t, x, x′))′ = f(t, x, x′),

x(c) = α(c), x(d) = α(d), (15)

which satisfies the estimate

|x′(t)| ≤ L + 1, t ∈ [c, d]. (16)

Denote
X1[c, d] = {x ∈ C1([c, d], IR) : x satisfies (15) and (16)}.

By definition, functions from X1 are uniformly bounded with respect to c and d. The
Carathéodory conditions imply that a function g ∈ L1(I, (0, +∞)) exists such that
|f(t, x(t), x′(t))| ≤ g(t), t ∈ [c, d], for any x ∈ X1[c, d]. Let G(t) =

∫ t

a
g(s) ds and let

ω1 stand for a modulus of continuity of the function G. Choose δ > 0 so that

min{φ(t, α(t), L + 1)− φ(t, α(t), L) : t ∈ I} > 2ω1(δ),

min{φ(t, α(t),−L)− φ(t, α(t),−L− 1) : t ∈ I} > 2ω1(δ).

We may suppose (taking δ smaller if needed) that

min{φ(t1, x1, L + 1) − φ(t2, x2, L) : t1, t2 ∈ I, |t2 − t1| < δ, |xi − α(ti)|
< (L + 1)δ, i = 1, 2} > ω1(δ),

min{φ(t1, x1,−L) − φ(t2, x2,−L− 1) : t1, t2 ∈ I, |t2 − t1| < δ,
|xi − α(ti)| < (L + 1)δ, i = 1, 2} > ω1(δ).

(17)

Introduce z = φ(t, x, y). By Implicit Function Theorem there exists a continuous function
ψ(t, x, z) = y. Consider the map T : X1[c, d] → X1[c, d], defined by

y(t) = (Tx)(t) = α(c) +

∫ t

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) dτ, (18)

where y′(c) is to be determined from the condition

∫ d

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) dτ = α(d)− α(c). (19)

Let us show that δ can be chosen so that the expression

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) (20)
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makes sense, y′(c) ∈ [−L− 1, L + 1]. Suppose that
∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c)) = φ(c, α(c), z)

and δ is such that z ∈ [−L− 2, L + 2]. Consider

φ(c, α(c), z) = φ(τ, x(τ), z) + φ(c, α(c), z)− φ(τ, x(τ), z) = φ(τ, x(τ), u)

and choose δ such that u ∈ [−L−3, L+3]. It is clear then, that the expression (20) makes
sense. Let us show that for y′(c) = L + 1 the left side of (19) is greater than α(d)− α(c).
Indeed, set

∫ d

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), L + 1)) dτ = ∆.

Then there exists e ∈ [c, d] such that

(d− c)ψ(e, x(e),

∫ e

c

f(s, x(s), x′(s)) ds + φ(c, α(c), L + 1)) = ∆,
∫ e

c

f(s, x(s), x′(s)) ds + φ(c, α(c), L + 1) = φ(e, x(e), ∆/(d− c)).

It follows from (17) that ∆ / (d− c) > L. Hence ∆ > L(d− c) ≥ α(d)−α(c). Similarly for
y′(c) = −L−1 the left side of (19) is less than α(d)−α(c). Then one can find y′(c) ∈ (−L−
1, L + 1) from (19). Show now that T : X1[c, d] → X1[c, d]. Obviously y(c) = α(c) and
(18) and (19) together imply that y(d) = α(d). Let us show that |y′(t)| ≤ L+1, t ∈ [c, d].
Suppose that max{y′(t) : t ∈ [c, d]} > L + 1. Then there exist t1, t2 ∈ [c, d] such that
y′(t1) = L, y′(t2) = L + 1, t2 < t1, and for t ∈ (t2, t1) the inequality L ≤ y′(t) ≤ L + 1
holds. It follows from (18) that

y′(t) = ψ(t, x(t),

∫ t

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))),

φ(t, x(t), y′(t))− φ(c, α(c), y′(c)) =

∫ t

c

f(s, x(s), x′(s)) ds,

φ(t2, x(t2), y
′(t2))− φ(t1, x(t1), y

′(t1)) =

∫ t2

t1

f(s, x(s), x′(s)) ds.

(21)

Hence

φ(t2, x(t2), L + 1)− φ(t1, x(t1), L) =

∫ t2

t1

f(s, x(s), x′(s)) ds

≤ |
∫ t2

t1

g(s) ds| ≤ ω1(δ),

which contradicts the inequality (17). The case of min{y′(t) : t ∈ [c, d]} < −L− 1 can be
considered similarly. Hence y ∈ X1[c, d]. Let ε > 0,

M = max{|α(t)| : t ∈ I}+ (L + 1)(b− a)
ω2(ε) = max{ψ(t2, x2, y2)− ψ(t1, x1, y1) : t1, t2 ∈ I, |t2 − t1| ≤ ε,
x1, x2 ∈ [−M, M ], |x2 − x1| ≤ ε(L + 1),
y1, y2 ∈ [−L− 1, L + 1], |y2 − y1| ≤ ω1(ε)}.
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It follows from (21) that the modulus of continuity of y′ is less or equal than ω2. Let
X[c, d] be a set of x ∈ X1[c, d] with the modulus of continuity of x′ being less or equal
than ω2. A set X[c, d] is convex and compact with respect to C1 norm.

Let us show that the map T is continuous. Let a sequence xn ∈ X[c, d] (n = 1, 2, . . .)
converge to a limit element x in C1 norm. Evidently x ∈ X[c, d]. Show that a sequence
yn = Txn (n = 1, 2, . . .) converges to y = Tx in C1 norm. It follows from (19) that

∫ d

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) dτ

=

∫ d

c

ψ(τ, xn(τ),

∫ τ

c

f(s, xn(s), x′n(s)) ds + φ(c, α(c), y′n(c))) dτ.

(22)

Let us prove now that y′n(c) → y′(c) as n → ∞. Suppose the contrary is true. Without
loss of generality we may assume that y′n(c) converges to some y′∗ 6= y′(c). Passing to a
limit in (22) yields

∫ d

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) dτ

=

∫ d

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′∗)) dτ,

which is impossible if y′(c) 6= y′∗. Therefore y′n(c) → y′(c) as n →∞. The relation

limn→∞ yn(t) = limn→∞(α(c) +

∫ t

c

ψ(τ, xn(τ),

∫ τ

c

f(s, xn(s), x′n(s)) ds

+φ(c, α(c), y′n(c))) dτ) = α(c) +

∫ t

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds

+φ(c, α(c), y′(c))) dτ = y(t), t ∈ [c, d]

implies the pointwise convergence of yn to y. Since yn (n = 1, 2, . . .) and y satisfy the
Lipschitz condition with a constant L + 1, sequence yn uniformly converges to y. The
relation (21) yields

limn→∞ y′n(t) = limn→∞ ψ(t, xn(t),

∫ t

c

f(s, xn(s), x′n(s)) ds + φ(c, α(c), y′n(c)))

= ψ(t, x(t),

∫ t

c

f(s, x(s), x′(s)) ds + φ(c, α(c), y′(c))) = y′(t), t ∈ [c, d].

Then y′n converges to y′ pointwisely. Since y′n (n = 1, 2, . . .) and y′ have modula of
continuity less or equal then ω2, pointwise convergence implies uniform convergence of
y′n to y′. This means that yn converges to y in C1 norm. Convexity and compactness
of X[c, d] and continuity of T : X[c, d] → X[c, d] together imply the existence of a fixed
point x ∈ X[c, d] such that

x(t) = α(c) +

∫ t

c

ψ(τ, x(τ),

∫ τ

c

f(s, x(s), x′(s)) ds + φ(c, x(c), x′(c))) dτ

or
(φ(t, x(t), x′(t))′ = f(t, x(t), x′(t)), t ∈ [c, d]. (23)
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To complete the proof for α, it suffices to show that there exists a solution x ∈ X[c, d]
of the equation (23), which satisfies the inequality x ≥ α. For this define φ∗ and f∗ as
follows

φ∗(t, x, y) = φ(t, α(t), y), x ≤ α(t)
φ∗(t, x, y) = φ(t, x, y), x > α(t)
f∗(t, x, x′) = f(t, α(t), α′(t)), x ≤ α(t)− 2|x′ − α′(t)|,
f∗(t, x, x′) = f(t, α(t), x′), α(t)− |x′ − α′(t)| ≤ x ≤ α(t),
f∗(t, x, x′) = f(t, x, x′), α(t) ≤ x,

f∗(t, x, x′) is linear with respect to x for α(t)− 2|x′ − α′(t)| ≤ x ≤ α(t)− |x′ − α′(t)| and
t, x′ fixed. It follows from the arguments above that a solution x ∈ X[c, d] of the equation

(φ∗(t, x, x′))′ = f∗(t, x, x′), t ∈ [c, d] (24)

exists. Show that x ≥ α. Suppose this is not the case. Let t0 ∈ (c, d) be such that
max{α(t)− x(t) : t ∈ [c, d]} = α(t0)− x(t0) and α(t0)− x(t0) > α(t)− x(t) for t ∈ (t0, d].
It follows from the maximum condition that α′l(t0)− x′(t0) ≥ α′r(t0)− x′(t0) and Lemma
2.1 implies that α′l(t0) ≤ α′r(t0). Therefore α′(t0) exists and α′(t0) = x′(t0). It follows from
the condition (5) that f∗(s, x(s), x′(s)) = f(s, α(s), α′(s)) for s ∈ (t0, t0 + ε), if ε > 0 is
sufficiently small. Hence for t ∈ (t0, t0 + ε) one has

α′(t)− x′(t) ≥ ψ(t, α(t),

∫ t

t0

f(s, α(s), α′(s)) ds + φ(t0, α(t0), α
′(t0)))

− ψ∗(t, x(t),

∫ t

t0

f∗(s, x(s), x′(s)) ds + φ∗(t0, x(t0), x
′(t0))) = 0,

which is in contradiction with the definition of t0. Thus x ≥ α.
Proof for β is analogous.

Remark 1. If α ∈ A(I, IR), β ∈ B(I, IR) and α ≤ β, then in the definition of a local
one-sided solvability one might assume in addition that α(t) ≤ x(t) ≤ β(t), t ∈ [t1, t2].

Remark 2. In a similar manner it is possible to prove a local solvability of the Cauchy
problem

(φ(t, x, x′))′ = f(t, x, x′), x(a) = A, x′(a) = A1, A, A1 ∈ IR.

In the work [6] one can find another definition of α and β. We state it below for
convenient reference.

Definition 4. A function α : I → IR is called by a lower function of equation
(3), if α ∈ C(I, IR) ∩ BV (I, IR), α′ ∈ L∞(I, IR), D−α(t) ≤ D+α(t), t ∈ (a, b), and
if D−α(t0) = D+α(t0) for some t0 ∈ (a, b), then ε > 0 exists such that φ(t, α, D+α) ∈
BV +([t0, t0 + ε], IR) and the inequality

(φ(t, α(t), D+α(t)))′ ≥ f(t, α(t), D+α(t)) (25)

holds a.e. on [t0, t0 + ε]. An upper function β is defined similarly.
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Theorem 2.3 Definitions 2 and 4 are equivalent.

Proof. Let α ∈ A(I, IR). We show that α satisfies the definition above. Since α is
lipschitzian, the inclusions α ∈ C(I, IR)∩BV (I, IR) and α′ ∈ L∞(I, IR) follow. By Lemma
2.1 there exist α′l(t), t ∈ (a, b] and α′r(t), t ∈ [a, b), the inequalities (6) (with respect to α)
and α′l(t) ≤ α′r(t), t ∈ (a, b) hold. The latter one implies that D−α(t) ≤ D+α(t), t ∈ (a, b).
The inclusion φ(t, α,D+α) ∈ BV +([t0, t0 + ε], IR) and (25) together are equivalent to the
condition: for any t1 ∈ [t0, t0 + ε) and t2 ∈ (t1, t0 + ε] the inequality

φ(t2, α(t2), D
+α(t2))− φ(t1, α(t1), D

+α(t1)) ≥
∫ t2

t1

f(s, α(s), D+α(s)) ds (26)

holds. In our case the inequality (26) is equivalent to

φ(t2, α(t2), α
′
r(t2))− φ(t1, α(t1), α

′
r(t1)) ≥

∫ t2

t1

f(s, α(s), α′(s)) ds,

which follows from (6) and α′l(t2) ≤ α′r(t2).
We will show now that Definition 4 implies Definition 2 on the interval [t0, t0 + ε],

where ε is sufficiently small. If there exists α′(t1) and α′(t2) then (26) implies (4). It
remains to prove that α is lipschitzian on [t0, t0 + ε]. Let |α′(t)| ≤ L for a.e. t ∈ I. We
prove that the limit

lim
t→t0+

D+α(t) =: αr(t0) (27)

exists. Suppose this is not the case and

lim inf
t→t0+

D+α(t) < c1 < c2 < lim sup
t→t0+

D+α(t). (28)

Pick t1 ∈ (t0, t0 + ε) and t2 ∈ (t1, t0 + ε) such that D+α(t1) > c2, D+α(t2) < c1 and

φ(t0, α(t0), c1)− φ(t0, α(t0), c2)
2 <

∫ t2

t1

f(s, α(s), α′(s)) ds

≤ φ(t2, α(t2), D
+α(t2))− φ(t1, α(t1), D

+α(t1))
< φ(t2, α(t2), c1)− φ(t1, α(t1), c2) < (φ(t0, α(t0), c1)− φ(t0, α(t0), c2))/2.

The contradiction obtained proves the existence of a limit in (27). It is clear that |αr(t0)| ≤
L. The inequality |D+α(t)| < L + 1, t ∈ [t0, t0 + ε) follows from (27) for ε sufficiently
small. Hence D+(α(t) + (L + 1)t) > 0, t ∈ [t0, t0 + ε). The function α(t) + (L + 1)t is
increasing ([4, p. 189]). Analogously the function α(t)− (L+1)t is decreasing. Therefore
α satisfies the Lipschitz condition on [t0, t0 + ε] with a constant L + 1. It follows from
Lemma 2.1 that α′r(t0) exists and α′r(t0) = αr(t0).

Thus the derivative α′r(t0) exists at any point t0 ∈ (a, b), where D−α(t0) = D+α(t0),
and |α′r(t0)| ≤ L. There is at most countable set of points such that D−α(t) < D+α(t)
([4, p. 63]). This means that the above arguments can be applied to prove that α is
lipschitzian function with a constant L on a whole interval I.

The proof of the local solvability from above for Definition 4 is analogous to the proof
of Theorem 2.2. By Theorem 2.1 then α ∈ A(I, IR).
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Lemma 2.3 If α ∈ A(I, IR) and β ∈ B(I, IR), α ≤ β,
|f(t, x, x′)| ≤ g(t) for a.e. t ∈ I, α ≤ x ≤ β, x′ ∈ IR, where g ∈ L1(I, IR),

inf{φ(t1, x1, L)− φ(t2, x2,
β(b)−α(a)

b−a
) : t1, t2 ∈ I, x1, x2 ∈ IR} > G,

inf{φ(t1, x1,
β(a)−α(b)

b−a
)− φ(t2, x2,−L) : t1, t2 ∈ I, x1, x2 ∈ IR} > G,

inf{φ(t1, x1, L1)− φ(t2, x2, L) : t1, t2 ∈ I, x1, x2 ∈ IR} > G,
inf{φ(t1, x1,−L)− φ(t2, x2,−L1) : t1, t2 ∈ I, x1, x2 ∈ IR} > G,

where G =
∫ b

a
g(t) dt, L, L1 ∈ (0, +∞),

then for any A ∈ [α(a), β(a)] and B ∈ [α(b), β(b)] there exists a solution to the Dirichlet
problem

(φ(t, x, x′))′ = f(t, x, x′), x(a) = A, x(b) = B, α ≤ x ≤ β. (29)

Proof. First, let functions φ∗(t, x, x′) and f∗(t, x, x′) be defined analogously as in the
proof of Theorem 2.2. Consider equation

(φ∗(t, x(t), x′(t)))′ = f∗(t, x(t), x′(t)), x(a) = A, x(b) = B. (30)

It can be shown likely as in the proof of Theorem 2.2 that a solution x of the problem
(30) (if any) satisfies the estimate α ≤ x ≤ β.

We will show now that the problem (30) has a solution. Let X(A,B) stand for a set of
functions x ∈ C1(I, IR), which satisfy the following conditions: x ∈ LipL(I, IR), x(a) = A,
x(b) = B and the modulus of continuity of x′ is less or equal to ω2. Set z = φ∗(t, x, y) and
y = ψ∗(t, x, z). Consider mapping T : X(A,B) → X(A,B), which is defined by

y(t) = (Tx)(t) = A +

∫ t

a

ψ∗(τ, x(τ),

∫ τ

a

f∗(s, x(s), x′(s)) ds + φ∗(a,A, y′(a))) dτ, (31)

where y′(a) is defined by

∫ b

a

ψ∗(τ, x(τ),

∫ τ

a

f∗(s, x(s), x′(s)) ds + φ∗(a,A, y′(a))) dτ = B − A. (32)

Evidently y(a) = A, and the equality y(b) = B follows from (31) and (32). Arguing as in
the proof of Theorem 2.2 one can show that the relation

ψ∗(τ, x(τ),

∫ τ

a

f∗(s, x(s), x′(s)) ds + φ∗(a, A, y′(a))), y′(a) ∈ [−L,L]

makes sense, y ∈ X(A, B), mapping T is continuous and there exists a fixed point x ∈
X(A,B) such that

x(t) = A +

∫ t

a

ψ∗(τ, x(τ),

∫ τ

a

f∗(s, x(s), x′(s)) ds + φ∗(a,A, x′(a))) dτ

or
(φ∗(t, x(t), x′(t)))′ = f∗(t, x(t), x′(t)), t ∈ I. (33)

Since equations (33) and (29) are equivalent for α ≤ x ≤ β, the assertion of the lemma
follows.
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Definition 5 ([17]). Let α, β : [a, b] → IR and α ≤ β. We say that the Schrader
condition is fulfilled for equation (3) between α and β, if for any c ∈ [a, b), d ∈ (c, b] and for
any solution x : (c, d) → IR of the equation (3) the estimate α(t) ≤ x(t) ≤ β(t), t ∈ (c, d)
implies that sup{|x′(t)| : t ∈ (c, d)} < ∞.

Theorem 2.4 Suppose that α ∈ A(I, IR), β ∈ B(I, IR), α ≤ β, A ∈ [α(a), β(a)], B ∈
[α(b), β(b)] and the Schrader condition is fulfilled for equation (3) between α and β.

Then the Dirichlet problem (29) has minimal and maximal solutions.

Proof. Let N > 0 be such that max{|α′(t)|, |β′(t)|} < N a. e. on the interval I.
Consider the Dirichlet problem

(φ(t, δ(α(t), x(t), β(t)), x′(t)) + max{0, x′(t)−N}+ min{0, x′(t) + N})′
= f(t, δ(α(t), x(t), β(t)), δ(−N, x′(t), N)),

x(a) = A, x(b) = B, α ≤ x ≤ β,
(34)

where

δ(u, z, v) =





v, if z > v
z, if u ≤ z ≤ v
u, if z < u.

By Lemma 2.3 the Dirichlet problem (34) has a solution xN . If |x′N(t)| < N, t ∈ I, then
xN is a solution of the Dirichlet problem (29). Let us show that |x′N(t)| < N, t ∈ I, for
some N. Suppose the contrary is true. Consider the case when for solutions xn there exist
intervals [an, bn] ⊂ [a, b] such that

max{|x′n(t)| : t ∈ [an, bn]} = x′n(bn) = n,
min{|x′n(t)| : t ∈ [an, bn]} = x′n(an) = B−A

b−a
.

Evidently xn satisfies equation (3) on the interval [an, bn]. Passing to a subsequence if
needed, one can show that {xn} converges to a solution x : (c, d) → IR of equation (3),
for which α(t) ≤ x(t) ≤ β(t), t ∈ (c, d) and sup{|x′(t)| : t ∈ (c, d)} = ∞, and this is
in contradiction with the Schrader condition. Other cases can be considered in a similar
manner.

Let us show that there exists maximal solution of the Dirichlet problem (29). If
there are finite number of solutions to the problem (29), then the existence of maximal
solution follows from Lemma 2.2. Consider the case of infinitely many solutions. Let
D(A,B) stand for a set of solutions of the problem (29). Denote α∗(t) = sup{x(t) : x ∈
D(A,B)}, t ∈ I and let ri (i = 1, 2, . . .) stand for all rational points of the interval I.
It follows from the compactness of the set D(A,B) that there exists x1 ∈ D(A,B) such
that x1(r1) = α∗(r1). By Lemma 2.2 there exists x2 ∈ D(A,B) such that x2 ≥ x1 and
x2(r2) = α∗(r2). Proceeding in the same manner, one obtains a monotone sequence xi

(i = 1, 2, . . .), which converges to α∗. Hence α∗ ∈ D(A,B). Proof in the case of minimal
solution is similar.

Remark 3. Theorem 2.4 implies the global solvability of the Dirichlet problem. If
α ∈ A(I, IR), β ∈ B(I, IR), α ≤ β and the Schrader condition for equation (3) between α
and β holds, then for any c ∈ [a, b), d ∈ (c, b], C ∈ [α(c), β(c)] and D ∈ [α(d), β(d)] there
exists a solution x : [c, d] → IR of equation (3) with the properties that x(c) = C, x(d) = D
and α(t) ≤ x(t) ≤ β(t), t ∈ [c, d].

Remark 4. Let α, β ∈ Lip(I, IR) and α ≤ β. If the global solvability takes place
between α and β, then by Theorem 2.1 α ∈ A(I, IR) and β ∈ B(I, IR).
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3 Bernstein - Nagumo type conditions

The role which play the Bernstein - Nagumo type conditions in the theory of the second
order differential equation

x′′ = f(t, x, x′), t ∈ I = [a, b] (35)

is well known. For discussion one may consult [1, Ch. I, §§1.4, 1.12], [10, Ch. XII,Lemma
5.1], [13, Ch. III, §2].

The first condition of this type was obtained by S. Bernstein ([2], [3]), who studied
the Euler - Lagrange equation in the classical calculus of variations. He proved that if (i)
∂f
∂x
≥ constant > 0 and (ii) |f(t, x, y)| ≤ C1 + C2y

2, then there exists a solution x(t) of
equation (35), which satisfies the Dirichlet boundary conditions x(a) = A, x(b) = B for
any A,B ∈ IR. The analysis of conditions (i) and (ii) (by the Bernstein condition usually
is meant the latter one) reveals that the condition (i) implies the existence of α and β,
described in the preceding section (any positive constant M, greater than |A| and |B|,
may be chosen as β, α = −β.). The condition (ii) itself guarantees the existence of a
constant N(M) such that any solution x : I → IR of (35), which satisfies the estimate

|x(t)| ≤ M, t ∈ I

satisfies also the estimate
|x′(t)| ≤ N, t ∈ I (36)

and N is a function of M only.
Later M. Nagumo obtained ([15]) a generalization of the Bernstein condition. Suppose

that a positive valued continuous function ψ exists such that

|f(t, x, y)| ≤ ψ(|y|), t ∈ I, |x| ≤ M, |y| large

∫ ∞
s ds
ψ(s)

= +∞.
(37)

Then there exists N(M) as above. The Bernstein function C1 + C2y
2 is good for any M.

Remark 5. Both the Bernstein and Nagumo conditions guarantee that no bounded
solution of (35) has an unbounded derivative x′(t), going to ∞ in a finite time, thus
implying the Schrader condition ([17]) described in the preceding section.

The Nagumo condition may be weakened if a priori bound on x(t) is known, that is a
constant M is known. Then the integral in (37) can be convergent. It is important only
that ∫ N

2M
b−a

s ds

ψ(s)
> 2M. (38)

Refinements and further generalizations can be found in [11], [8], [16]. For discussion
about Bernstein - Nagumo type conditions one may consult also the books [1], [10], [13].

In addition to conditions imposed on φ and f in the previous section we assume in
the sequel that given α and β such that α ≤ β

lim
x′→−∞

φ(t, x, x′) = −∞, lim
x′→+∞

φ(t, x, x′) = +∞ (39)
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and the limits are uniform in (t, x), a ≤ t ≤ b, α ≤ x ≤ β.
The next statement is a generalization of the result by I. Kiguradze and N. Lezhava

[12].

Theorem 3.1 Assume that:
1) the inequality

|f(t, x, y)| ≤
(

g0(t) +
n∑

i=1

gi(t) hi(x) |y| 1
qi

)
· ω(|φ(t, x, y)|) (40)

holds for t ∈ I, α(t) ≤ x ≤ β(t), |y| ≥ λ := β∗−α∗
b−a

, where ω : (0, +∞) → (0, +∞) is
a continuous function, g0 ∈ L1(I), gi ∈ Lpi(I), hi ∈ C([α∗, β∗]) are non-negative valued
functions, α∗ = minI α(t), β∗ = maxI β(t), qi ≥ 1 and 1

pi
+ 1

qi
= 1 ( i = 1, 2, . . . , n;)

2) the inequality

∫ +∞

Λ

ds

ω(s)
> ‖g0‖L1(I) +

n∑
i=1

‖gi‖Lpi (I) · ‖hi‖Lqi ([α∗,β∗]) =: µ (41)

holds, where
Λ := max{|φ(t, x, y)| : a ≤ t ≤ b, α ≤ x ≤ β, |y| ≤ λ}.

Then a constant N > 0 exists such that for any solution x : I → IR of the equation
(3), which satisfies α ≤ x ≤ β, the estimate (36) is valid.

Proof. Given N > 0, set

K(N) := min{|φ(t, x, y)| : a ≤ t ≤ b, α ≤ x ≤ β, |y| ≥ N}.

Choose N such that
∫ K(N)

Λ
ds

ω(s)
> µ. This is possible in view of (39) and (41). We will

show now that the estimate (36) holds. Suppose this is not the case. Then |x′(t1)| = N
at some point t1. Notice that |x′(t0)| = λ at some point t0 ∈ I. The following four cases
are possible:

x′(t0) = λ, x′(t1) = N, t1 > t0;
x′(t0) = λ, x′(t1) = N, t1 < t0;

x′(t0) = −λ, x′(t1) = −N, t1 > t0;
x′(t0) = −λ, x′(t1) = −N, t1 < t0.

Consider the first one. Evidently Φ(t0) ≤ Λ and Φ(t1) ≥ K(N), where Φ(t) := φ(t, x(t), x′(t)).
Then there exist ξ ∈ [t0, t1) and η ∈ (ξ, t1] such that

Φ(ξ) = Λ, Φ(η) = K(N), Λ ≤ Φ(t) ≤ K(N) ∀t ∈ (ξ, η).

Using (40), one has for t ∈ (ξ, η)

Φ′(t) = f(t, x(t), x′(t)) ≤
(

g0(t) +
n∑

i=1

gi(t) hi(x(t)) x′(t)
1
qi

)
· ω(Φ(t)). (42)
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Dividing both sides of (42) by ω(Φ(t)), integrating over the interval [ξ, η] and using the
Hölder inequality, one gets

∫ η

ξ

Φ′(t) dt
ω(Φ(t))

=

∫ K(N)

Λ

ds
ω(s)

≤
∫ η

ξ

g0(t) dt +

∫ η

ξ

gi(t)hi(x(t))x′(t)
1
qi dt

≤ ‖g0‖L1[ξ,η] + ‖gi‖Lpi [ξ,η] ·
(∫ η

ξ

hqi

i (x(t)) x′(t) dt

) 1
qi

≤ ‖g0‖L1(I) + ‖gi‖Lpi(I) ·
(∫ η

ξ

hqi

i (x(t)) dx(t)

) 1
qi

≤ ‖g0‖L1(I) + ‖gi‖Lpi(I) ·
(∫ β∗

α∗
hqi

i (s) ds)

) 1
qi

= ‖g0‖L1(I) + ‖gi‖Lpi(I) · ‖hi‖Lqi [α∗,β∗].

(43)

The above estimate is in contradiction with (41). Other cases can be treated similarly.
Hence the proof.

Corollary 3.1 Suppose that

|f(t, x, y)| ≤ c · |y| · |φ(t, x, y)| (44)

for t ∈ I, α ≤ x ≤ β, |y| ≥ λ, where λ is as above and c is a positive constant.
Then conclusion of Theorem 3.1 is true.

Proof. Choose g0 = 0, n = 1, g1 = c, h1 = 1, q1 = 1 and ω(s) = s.

Remark 6. If Φ(y) ≡ y, then (44) reduces to |f(t, x, y)| ≤ c y2 and this corresponds
to the Bernstein condition for equation (35).

Corollary 3.2 Suppose that

|f(t, x, y)| ≤ ψ(t) · |y| · ω(|φ(t, x, y)|) (45)

for t ∈ I, α ≤ x ≤ β, |y| ≥ λ, where ψ ∈ L∞(I, IR+), ω and λ are as above and

∫ ∞ ds

ω(s)
= +∞.

Then conclusion of Theorem 3.1 is true.

Proof. Choose g0 = 0, n = 1, g1 = ψ, h1 = 1, q1 = 1.
Remark 7. If Φ(y) ≡ y and ψ ≡ 1, then (45) reduces to |f(t, x, y)| ≤ |y|ω(|y|) and we

arrive to the Nagumo condition (37) for equation (35) with a Nagumo function φ defined
by φ(s) = s ω(s).
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Corollary 3.3 Suppose that φ = φ(x′) in (3) and

|f(t, x, y)| ≤ ψ(t) · |y| 1q · ω(|φ(y)|) (46)

for t ∈ I, α ≤ x ≤ β, |y| ≥ λ, where ψ ∈ Lp(I, IR+), ω and λ are as above, q ≥ 1, and
∫ ∞

Λ

ds

ω(s)
> ‖ψ‖Lp(I) · (β∗ − α∗)

1
q ,

where Λ, β∗, α∗ are as in conditions of Theorem 3.1.
Then conclusion of Theorem 3.1 is true.

Proof. Choose g0 = 0, n = 1, g1 = ψ, h1 = 1.

Remark 8. This condition corresponds to the Nagumo conditions for φ-laplacian
equations as given in [6] (Definition 1) and [5] for the case q ≡ 1 (Definition 2.4). The

function s
1
q · ω(φ(s)) serves as k(s) in [6] and Θ(s) in [5].

Corollary 3.4 Suppose that

|f(t, x, y)| ≤ (g(t) + h(x)|y|) · ω(|φ(t, x, y)|) (47)

for t ∈ I, α ≤ x ≤ β, |y| ≥ λ, where g ∈ L1([a, b]) and h ∈ C([α∗, β∗]) are non-negative
valued functions, ω and λ are as in conditions of Theorem 3.1 and

∫ +∞

Λ

ds

ω(s)
> ‖g‖L1(I) + ‖h‖L1([α∗,β∗]).

Then conclusion of Theorem 3.1 is true.

Proof. Choose g0 = g, n = 1, g1 = 1, h1 = h, qi = 1 and apply Theorem 3.1.

Remark 9. This result is a generalization of the one by H. Epheser [8].
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[15] M. Nagumo, Über die Differentialgleichung y′′ = f(x, y, y′), Proc. Phys. Math.
Soc. Japan, 19, 861 - 866 (1937).

[16] F.Zh. Sadyrbaev, Lyapunov functions and the solvability of the first boundary
value problem for second order ordinary differential equations (in Russian), Dif-
ferencial’nye uravnenija (Differential Equations), 16 (1980), n 4, 629-634.

[17] K. Schrader: Existence theorems for second-order boundary value problems. J.
Different. Equations, 5 (3), 1969, 572.

[18] M.X. Wang, A. Cabada and J.J. Nieto: Monotone method for nonlinear second
order periodic boundary value problems with Carathéodory functions. Ann. Polon.
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À.ß. Ëåïèí, Ë.À. Ëåïèí, Ô.Æ. Ñàäûðáàåâ. Ìåòîä íèæíèõ è âåðõíèõ
ôóíêöèé äëÿ îäíîìåðíîãî óðàâíåíèÿ ñ φ-Ëàïëàñèàíîì.

Àííîòàöèÿ. Ðàññìàòðèâàåòñÿ óðàâíåíèå (φ(t, x, x′))′ = f(t, x, x′) ñ êðàåâûìè óñ-
ëîâèÿìè x(a) = A, x(b) = B. Âåðõíèå è íèæíèå ôóíêöèè óäîâëåòâîðÿþò âåñüìà
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îáùèì îïðåäåëåíèÿì. Ïîêàçàíî, ÷òî äàííûå îïðåäåëåíèÿ ÿâëÿþòñÿ â íåêîòîðîì
ñìûñëå íàèëó÷øèìè. Âî âòîðîé ÷àñòè ðàáîòû ïîëó÷åíû óñëîâèÿ òèïà Íàãóìî -
Áåðíøòåéíà äëÿ ðàññìàòðèâàåìîé çàäà÷è.

ÓÄÊ 517.927

A.Lepins, L.Lepins, F. Sadirbajevs. Augšējo un apakšējo funkciju metode vienu
dimensiju φ-laplasian diferenciālvienādojumam.

Anotācija. Tiek apskat̄its diferenciālvienādojums (φ(t, x, x′))′ = f(t, x, x′) ar robež-
nosac̄ıjumiem x(a) = A, x(b) = B. Augšējas un apakšējas funkcijas ir ieviestas ar samēra
vispār̄ıgu defin̄ıciju. Tiek parad̄ıts ka š̄ı defin̄ıcija ir zināma noz̄ıme vislabāka. Raksta
otrajā daļā tiek iegūti Bernšteina - Nagumo tipa nosac̄ıjumi apskatāmam gad̄ıjumam.
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