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On the Properties of Solutions of

the Third Order Nonlinear Differential Equations

and their Applications

S. Smirnov 1

Summary. The structure and properties of solutions of a third order nonlinear au-
tonomous ordinary differential equation are discussed. Inequalities which show the con-
nection between initial values of solutions are considered. Also zero properties of solutions
are provided. Zero properties are used to establish results on the estimation of the number
of solutions to boundary value problem.

1991 MSC 34B15

1 Introduction

The author considers the third order nonlinear autonomous differential equation

x′′′ + f(x) = 0 (1)

where the function f(x) is continuous and solutions of the equation (1) are unique with
respect to initial data. We will use also the following assumptions

(A1) x · f(x) > 0 if x 6= 0;

(A1′) ∃ m, M > 0 such that |f(x)| > M when |x| > m;

(A2) f(Ax) = Akf(x), A, k ∈ R, k > 1;

(A3) f(Ax) = Akf(x), A, k ∈ R, 0 < k < 1.
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2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015



105

Properties of solutions of the third order linear differential equations were intensively
studied in the literature. The classical results in the theory of linear equations concern
the oscillatory properties, distribution of zeros, separation of zeros, conjugate points, etc.
Let us mention works by N.V. Azbelev and Z.B. Caljuk [6], M. Hanan [7], A.C. Lazer
[8], W.R. Utz [11], W. J. Kim [12], G.J. Etgen and C.D. Shih [13], Gary D. Jones [14],
L. Erbe [15], [16]. Results concerning properties of solutions of nonlinear equations are
more complicated, more actual. Let us mention papers by P. Waltman [9], J. W. Heidel
[10], I.V. Astashova [20].

The main purpose of the present paper is to consider properties of solutions of the
equation (1), which can be used in the estimation of the number of solutions to boundary
value problems.

Boundary value problems have been widely investigated in the literature, mainly for
the second order case. Let us mention books by P. Bailey, L. Shampine, P. Waltman [1],
S. Bernfeld and V. Lakshmikantham [2], N.I. Vasilyev and Yu.A. Klokov [3], and modern
treatises by C. de Coster, P. Habets [18], W. Kelley, A. Peterson [4].

In contrast to the second order case, less results are known for higher order equations
(in particular for third order ones). Results concerning two-point third order nonlinear
boundary value problems were obtained by E. Rovderova [17], F. Sadyrbaev [19]. In
[17] the author states some results on the number of solutions of two-point boundary
value problems. In [19] the author established multiplicity results for certain classes of
third order nonlinear boundary value problems. His approach was based on the Hanan’s
theory [7] of conjugate points for third order linear differential equations. Results which
ensure the existence of infinitely many solutions of (1), (2) under the superlinear growth
condition on the function f(x) are given by C. de Coster and M. Gaudenzi [18].

The shooting method is used for treating the number of solutions to boundary value
problems. In view of the use of the shooting method, the problem the author faced with is

the non-continuability of the solutions. For example, the function x(t) =

(
105

8

) 1
2

(t− t0)
− 3

2

is a solution of the equation x′′′+x3 = 0 which is defined only for t > t0. However, as the
reader will see further non-continuability does not influence the results about estimation
of the number of solutions to boundary value problem.

The paper is organized as follows. In section 2 we consider some basic results and
notions which are used in later sections. The 3rd section is devoted to the properties of
solutions of the equation (1). In section 4 we deal with the applications to boundary value
problems. Illustrative examples are given in the 5th section.

2 Preliminary results

Proposition 2.1 Suppose x(t) ∈ C3(I). If x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0 (but not all
zero) and x′′′(t) · x(t) ≤ 0, then x(t) > 0, x′(t) < 0, x′′(t) > 0 for t < a.

Proof. Let x(a) ≥ 0, x′(a) ≤ 0, x′′(a) ≥ 0 and (x(a))2 + (x′(a))2 + (x′′(a))2 > 0.
In all cases x(t) will be positive in some open interval whose right boundary point is t = a.

Suppose that there exists a point t = t0 such that x(t0) = 0 and x(t) > 0 for t0 < t < a.
Since x(t0) = 0, there will exist a point t = t1, t0 ≤ t1 < a such that x′(t1) = 0 and

there will exist a point t = t2, t0 ≤ t2 < a such that x′′(t2) = 0.
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Since x′′′(t) · x(t) ≤ 0, it follows that x′′′(t) < 0 for t0 < t < a.
Consider

x′′(t) = x′′(a)−
a∫

t

x′′′(s)ds, t0 ≤ t < a. The right-hand side is positive, and increases in t,

as long as x′′′(t) remains negative. We thus conclude that x′′(t) is positive for t0 ≤ t < a.
Consider

x′(t) = x′(a)−
a∫

t

x′′(s)ds, t0 ≤ t < a. The right-hand side is negative, and decreases in t,

as long as x′′(t) remains positive. We thus conclude that x′(t) is negative for t0 ≤ t < a.
Consider

x(t) = x(a)−
a∫

t

x′(s)ds, t0 ≤ t < a. The right-hand side is positive, and increases in t,

as long as x′(t) remains negative. We thus conclude that x(t) is positive for t0 ≤ t < a.
These contradictions prove the proposition. ¤

Proposition 2.2 Suppose x(t) ∈ C3(I). If x(a) ≤ 0, x′(a) ≥ 0, x′′(a) ≤ 0 (but not all
zero) and x′′′(t) · x(t) ≤ 0, then x(t) < 0, x′(t) > 0, x′′(t) < 0 for t < a.

Proof. The proof is analogous. ¤
Remark 2.1. Function x(t) from propositions 2.1 and 2.2 may be thought as a solution of
differential equation (1).

3 Properties of solutions

The following observation will play an important role in the proofs of our main results.

Proposition 3.1 Suppose that the condition (A2) or (A3) is satisfied. If x(t) is a solution
of the equation (1), then the function

y(t) = Ax(Bt + C),

where A, B, C are arbitrary constants, such that Ak−1 = B3, is also a solution of the
equation (1).

Remark 3.1. Similar result for higher order Emden-Fowler type equation can be found in
[20].
Proof. The proposition can be proved by direct substitution.

y′′′(t) = AB3x′′′(Bt + C);

f(y(t)) = Akf(x(Bt + C)).

Thus AB3 = Ak or Ak−1 = B3. ¤
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The next three corollaries deal with the initial value inequalities.

Corollary 3.1 Suppose that the condition (A1) holds. If x(t) is a nontrivial solution of
(1) and x(a) = x(b) = 0 (a < b), then x′(b) · x′′(b) > 0.

Proof. Assume x′(b) · x′′(b) ≤ 0.

1. x′(b) ≤ 0, x′′(b) ≥ 0. Then, by the proposition 2.1 x(t) > 0 for t < b. Contradiction,
since x(a) = 0.

2. x′(b) ≥ 0, x′′(b) ≤ 0. Then, by the proposition 2.2 x(t) < 0 for t < b. Contradiction,
since x(a) = 0. ¤

Corollary 3.2 Suppose that the condition (A1) holds. If x(t) is a nontrivial solution of
(1) and x′(a) = x′(b) = 0 (a < b), then x(b) · x′′(b) < 0.

Proof. The proof is analogous. ¤

Corollary 3.3 Suppose that the condition (A1) holds. If x(t) is a nontrivial solution of
(1) and x′′(a) = x′′(b) = 0 (a < b), then x(b) · x′(b) > 0.

Proof. The proof is analogous. ¤

Now we state results on zero properties of solutions.

Corollary 3.4 Suppose that the condition (A1) is satisfied.

1. If x(t) is a nontrivial solution of (1) and x(a) = x(b) = 0, a < b, then x′(b) 6= 0.

2. If x(t) is a nontrivial solution of (1) and x(a) = x(b) = 0, a < b, then x′′(b) 6= 0.

3. If x(t) is a nontrivial solution of (1) and x′(a) = x′(b) = 0, a < b, then x(b) 6= 0.

4. If x(t) is a nontrivial solution of (1) and x′(a) = x′(b) = 0, a < b, then x′′(b) 6= 0.

5. If x(t) is a nontrivial solution of (1) and x′′(a) = x′′(b) = 0, a < b, then x(b) 6= 0.

6. If x(t) is a nontrivial solution of (1) and x′′(a) = x′′(b) = 0, a < b, then x′(b) 6= 0.

Proof. We will give the proof for the first case. For the other cases the proof is
analogous. Assume x′(b) = 0, and, without loss of generality, let x′′(b) > 0. Then, by the
proposition 2.1 x(t) > 0 for t < a. But x(a) = 0, a < b. The contradiction proves the
corollary. ¤
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Proposition 3.2 Let x(t) be a solution of the equation (1) such that x(a) = x′(b) = 0
(a < b), x(t) 6= 0 for t ∈ (a, b). If the condition (A1) holds, then x(t) vanishes in (b, +∞).

Proof. Assume that x(t) does not change sign for t > b. Without loss of generality, let
x(t) > 0, t > b. Multiplying the equation (1) by x(t) and integrating from a to t, we
obtain

t∫

a

x(s)x′′′(s)ds +

t∫

a

x(s)f(x(s))ds = 0.

Integrating the first term by parts, we get

x(t)x′′(t)− x(a)x′′(a)−
t∫

a

x′′(s)x′(s)ds +

t∫

a

x(s)f(x(s))ds = 0,

or

x(t)x′′(t) =
1

2
x′2(t)− 1

2
x′2(a)−

t∫

a

x(s)f(x(s))ds.

If t = b we obtain

x(b)x′′(b) =
1

2
x′2(b)− 1

2
x′2(a)−

b∫

a

x(s)f(x(s))ds < 0.

Since x(b) > 0, then x′′(b) < 0. Since x(t) > 0, then (in view of (A1) and (1)) x′′′(t) < 0
and x′′(t) is strictly decreasing. Thus x′′(t) < 0 for t > b and x′(t) is strictly decreasing
for t > b. Since x′(b) = 0 and x′(t) is strictly decreasing for t > b, then x′(t) < 0 for t > b.
Thus x(t) is strictly decreasing for t > b. If two consecutive derivatives of x(t) are negative
then x(t) must ultimately be negative. This completes the proof of the proposition. ¤

Proposition 3.3 Let x(t) be a solution of the equation (1) such that x(a) = 0. If the
conditions (A1) and (A1′) hold, then x(t) vanishes in (a, +∞).

Proof. Suppose that x(t) does not vanish for t > a. Without loss of generality, let
x(t) > 0 for t > a. If there exists a b > a such that x′(b) = 0, then the proof follows
from the Proposition 3.2 above. Therefore, assume that x′(t) does not vanish for t > a.
Since x′(t) > 0 for t immediately to the right of a, it follows that x′(t) > 0 for t > a. As
x(t) > 0, then (in view of (A1) and (1)) x′′′(t) < 0 and x′′(t) is strictly decreasing.

First suppose there exists t1 ≥ a such that x′′(t1) = 0. Hence x′′(t) < 0 for t > t1. If
two consecutive derivatives of x′(t) are negative then x′(t) must ultimately be negative.

Now assume that x′′(t) > 0 for t > a. So x′(t) is strictly increasing for t > a.
Integrating the equation (1) between t0 > a and t we obtain

t∫

t0

x′′′(s)ds +

t∫

t0

f(x(s))ds = 0,
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or

x′′(t0) = x′′(t) +

t∫

t0

f(x(s))ds ≥
t∫

t0

f(x(s))ds ≥
t∫

t0

Mds.

The left side is independent of t and thus the integral on the right must converge as
t → +∞, but the integral diverge. This contradiction proves the proposition. ¤

Further we assume that the conditions (A1) and (A1′) are satisfied.

Corollary 3.5 If x(t) is a nontrivial solution of (1) and t = a is a zero of x(t), then
x(t) has an infinity of simple zeros in (a, +∞). If t = a is a double zero of x(t), then x(t)
does not vanish in (−∞, a).

Consider the solution of the equation (1) with initial conditions x(0) = 0, x′(0) = 0,
x′′(0) = 1. Let denote this solution by x0(t) and call by normalized solution. Let denote
simple zeros of x0(t) to the right from t = 0 by t1, t2, . . . , ti, . . . , simple zeros of x′0(t) to
the right from t = 0 by τ1, τ2, . . . , τi, . . . , simple zeros of x′′0(t) to the right from t = 0 by
ζ1, ζ2, . . . , ζi, . . .

Proposition 3.4 Suppose that the condition (A2) or (A3) holds. Every solution x(t),
which has a double zero at t = 0 can be expressed via the normalized solution x0(t) as

x(t) = B
3

k−1 x0(Bt), with initial data x(0) = 0, x′(0) = 0, x′′(0) = B
3

k−1
+2.

Proof. It follows from the Proposition 3.1, that x(t) = B
3

k−1 x0(Bt) is a solution of (1).

Moreover x(0) = 0, x′(0) = 0 and x′′(0) = B
3

k−1
+2. ¤

Proposition 3.5 Assume that the condition (A2) is satisfied. Suppose, that x1(t) is the
solution of the equation (1) with the initial conditions x(0) = 0, x′(0) = 0, x′′(0) = β1, and
x2(t) is the solution of the equation (1) with the initial conditions x(0) = 0, x′(0) = 0,
x′′(0) = β2. If β1 < β2, then tβ2

i < tβ1

i , τβ2

i < τβ1

i , ζβ2

i < ζβ1

i , i = 1, 2, . . . Moreover
if β1 continuously and monotonically tends to +∞, then tβ1

i , τβ1

i , ζβ1

i continuously and
monotonically tend to zero, and if β1 continuously and monotonically tends to zero, then
tβ1

i , τβ1

i , ζβ1

i continuously and monotonically tend to +∞.

Proof. By the Proposition 3.4

x1(t) = B
3

k−1

1 x0(B1t), x1(0) = x′1(0) = 0, x′′1(0) = B
3

k−1
+2

1 = β1,

x2(t) = B
3

k−1

2 x0(B2t), x2(0) = x′2(0) = 0, x′′2(0) = B
3

k−1
+2

2 = β2, k > 1.

Since β1 < β2, then B1 < B2 and, obviously, tβ2

i < tβ1

i , τβ2

i < τβ1

i , ζβ2

i < ζβ1

i , i = 1, 2, . . .
If β1 continuously and monotonically tends to +∞ (zero), then B1 also continuously and
monotonically tends to +∞ (zero). Thus tβ1

i , τβ1

i , ζβ1

i continuously and monotonically
tend to zero (+∞). ¤
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Proposition 3.6 Assume that the condition (A3) is satisfied. Suppose, that x1(t) is the
solution of the equation (1) with the initial conditions x(0) = 0, x′(0) = 0, x′′(0) = β1, and
x2(t) is the solution of the equation (1) with the initial conditions x(0) = 0, x′(0) = 0,
x′′(0) = β2. If β1 < β2, then tβ2

i > tβ1

i , τβ2

i > τβ1

i , ζβ2

i > ζβ1

i , i = 1, 2, . . . Moreover
if β1 continuously and monotonically tends to +∞, then tβ1

i , τβ1

i , ζβ1

i continuously and
monotonically tend also to +∞, and if β1 continuously and monotonically tends to zero,
then tβ1

i , τβ1

i , ζβ1

i continuously and monotonically tend also to zero.

Proof. By the Proposition 3.4

x1(t) = B
3

k−1

1 x0(B1t), x1(0) = x′1(0) = 0, x′′1(0) = B
3

k−1
+2

1 = β1,

x2(t) = B
3

k−1

2 x0(B2t), x2(0) = x′2(0) = 0, x′′2(0) = B
3

k−1
+2

2 = β2, 0 < k < 1.

Since β1 < β2, then B1 > B2 and, obviously, tβ2

i > tβ1

i , τβ2

i > τβ1

i , ζβ2

i > ζβ1

i , i = 1, 2, . . .
If β1 continuously and monotonically tends to +∞ (zero), then B1 also continuously and
monotonically tends to zero (+∞). Thus tβ1

i , τβ1

i , ζβ1

i continuously and monotonically
tend to +∞ (zero). ¤

4 Applications to boundary value problems

Consider the equation (1) together with boundary conditions

x(a) = x′(a) = 0, x(b) = 0, a < b. (2)

Theorem 4.1 Suppose that the condition (A2) or (A3) holds, then the boundary value
problem (1), (2) has a countable set of solutions xi(t), i = 0, 1, 2, . . . Any solution xi(t)
has exactly i simple zeros on (a, b).

Proof. We will give the proof for the case (A2), for the case (A3) the proof is analogous.
Consider the auxiliary initial value problem (1), x(a) = x′(a) = 0, x′′(a) = β.
By the Proposition 3.5 we can choose β so large, that t1 > b, and β so small, that for
every i ti < b. The proof of the theorem follows from the continuity. ¤

Remark 4.1. Obviously, boundary conditions (2) can be replaced by more general ones

x(a) = 0, x(i)(a) = 0, x(j)(b) = 0, i ∈ {1, 2}, j ∈ {0, 1, 2}. (3)

5 Examples

Example 5.1 Consider the problem

x′′′ + x3 = 0, x(0) = x′(0) = 0, x(1) = 0. (4)

The function f(x) = x3 satisfies the assumptions (A1), (A1′) and (A2) with k = 3. Thus,
the problem (4) has a countable set of solutions xi(t), i = 0, 1, 2, . . . Any solution xi(t)
has exactly i simple zeros on (0, 1).
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Figure 5.1 Some solutions of the problem (4).

Example 5.2 In this example we compare normalized solutions (see, Fig. 5.2) for the
equation x′′′+x3 = 0 (dashed) and x′′′+(4x+)3−(x−)3 = 0 (solid), where x+ = max (x, 0),
x− = max (−x, 0).

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t
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5

10
xHtL

Figure 5.2 Normalized solutions.

Remark 5.1. The problem

x′′′ + (4x+)3 − (x−)3 = 0, x(0) = 0, x′(0) = 0, x(1) = 0 (5)

also has the countable set of solutions, since the function f(x) = (4x+)3 − (x−)3 satisfies
the assumptions (A1), (A1′) and (A2) with k = 3.
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Ñ. Ñìèðíîâ. Î ñâîéñòâàõ ðåøåíèé íåëèíåéíûõ äèôôåðåíöèàëüíûõ
óðàâíåíèé òðåòüåãî ïîðÿäêà.

Àííîòàöèÿ. Îáñóæäàþòñÿ ñòðóêòóðà è ñâîéñòâà ðåøåíèé íåëèíåéíûõ äèôôå-
ðåíöèàëüíûõ óðàâíåíèé òðåòüåãî ïîðÿäêà. Ðàññìàòðèâàþòñÿ íåðàâåíñòâà, êîòîðûå
ïîêàçûâàþò ñâÿçü ìåæäó íà÷àëüíûìè çíà÷åíèÿìè. Òàê æå äàþòñÿ ñâîéñòâà íóëåé
ðåøåíèé. Ïîëó÷åííûå ðåçóëüòàòû èñïîëüçóþòñÿ äëÿ îöåíêè ÷èñëà ðåøåíèé êðàåâîé
çàäà÷è.

ÓÄÊ 517.927

S. Smirnovs. Par nelineāro trešās kārtas diferenciālvienādojumu atrisinā-
jumu ı̄paš̄ıbām.

Anotācija. Tiek apspriestas trešās kārtas nelineāru diferenciālvienādojumu atrisinā-
jumu ı̄paš̄ıbas. Iegūtie rezultāti tiek izmantoti lai novertētu robežproblēmas atrisinājumu
skaitu.
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